Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 274-277    
  无机非金属及其复合材料 |
人工智能方法在土木工程监测中的运用
丁杨1, 周双喜2, 董晶亮2, 王中平3, 郑智秋2
1 浙江大学建筑工程学院,杭州 310058
2 华东交通大学土木建筑学院,南昌 330013
3 同济大学材料科学与工程学院,上海 201804
Application Comparison of Artificial Intelligence Method in Civil Engineering Monitoring
DING Yang1, ZHOU Shuangxi2, DONG Jingliang2, WANG Zhongping3, ZHENG Zhiqiu2
1 School of Architecture Engineering, Zhejiang University, Hangzhou 310058
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013
3 School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着计算机技术的快速发展,土木工程领域的监测、预测方法得到了不断的更新。以大体积混凝土浇筑过程为工程背景,结合BP、GA-BP、PSO-BP、SOM、CNN、SVM和PNN算法建立预测模型。通过实测数据和预测模型得出:大体积混凝土水化放热会使得内部温度在2 d内先升高后下降;以统计率理论为基础的SVM、PNN神经网络和以深度学习为基础的CNN神经网络所建立的预测模型与实测数据非常吻合,其误差在2%以内;BP神经网络预测误差在10%左右,但通过遗传算法进行改进后误差在5%左右。结合七种人工智能方法,选择合适的算法并进行优化,可为今后土木工程领域监测-预测-预警提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁杨
周双喜
董晶亮
王中平
郑智秋
关键词:  人工智能  MATLAB  土木工程  健康监测    
Abstract: With the rapid development of computer technology, monitoring and forecasting methods in the field of civil engineering have been constantly updated. Taking the pouring process of mass concrete as the engineering background, combined with BP, GA-BP, PSO-BP, SOM, CNN, SVM and PNN, the prediction model was established. According to the measured data and prediction model, it can be concluded that the internal temperature of mass concrete increases first and then decreases within 2 days due to hydration and heat release. The error of prediction model based on SVM, PNN neural network and CNN neural network is less than 2%. The prediction error of BP network is about 10%, but the error is 5% after improvement by genetic algorithm. Combining seven kinds of artificial intelligence methods, choosing the appropriate algorithm and optimizing can provide the basis for monitoring, predicting and early warning in the field of civil engineering in the future.
Key words:  artificial intelligence    MATLAB    civil engineering health monitoring
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU528.01  
  TP183  
  TP391.41  
基金资助: 国家重点研发项目(2016YFC0700807;2017YFC0504506;2017YFC0504503);国家青年基金项目(51708220);水利部黄土高原水土流失过程与控制重点实验室开放课题基金(201806)
作者简介:  丁杨,浙江大学在读博士研究生。主要研究方向为深度学习在土木工程中的运用。周双喜,华东交通大学土木建筑学院,副教授。2006年博士毕业于中国建筑材料科学研究总院,主要研究方向为混凝土结构耐久性能和混凝土无损检测新技术。green.55@163.com
引用本文:    
丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
DING Yang, ZHOU Shuangxi, DONG Jingliang, WANG Zhongping, ZHENG Zhiqiu. Application Comparison of Artificial Intelligence Method in Civil Engineering Monitoring. Materials Reports, 2019, 33(z1): 274-277.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/274
1 杜德润, 仇德伦, 李爱群,等.无损检测,2004,26(8),383.
2 吴大宏, 赵人达. 四川建筑科学研究,2002, 28(3),4.
3 Albuthbahak O M, Alkhudery H H. International Journal of Civil engineering & Technology,2018,9(2),265.
4 Chen F C, Jahanshahi M R. IEEE Transactions on Industrial Electronics,2018,65(5),4392.
5 张帆, 胡伍生.东南大学学报(英文版),2013,29(4),441.
6 肖进胜, 刘恩雨, 朱力,等.光学学报, 2017(3),96.
7 Han B, Xiang T Y, Xie H B. Engineering Structures,2017,142(7),46.
8 丁杨. 河北工程大学学报(自然科学版),2016,33(2),30.
9 Hoseinian Fatemeh Sadat, Abdollahzadeh Aliakbar, Rezai Bahram. Journal of Central South University,2018,25(1),151.
10 戴隆州, 吴永明, 李少波,等.计算机应用研究,2018,35(1),145.
11 丁杨, 陈希杰, 杜欣,等.安徽理工大学学报(自然科学版),2017,37(4),32.
12 Deng F, He Y, Zhou S, et al. Construction and Building Materials,2018,175,562.
13 张莉, 卢星凝, 陆从林,等.中国科学技术大学学报,2017(1),1.
14 王彦富, 李玉莲, 张彪,等.安全与环境学报,2016,16(5),66.
15 翟社平, 郭琳, 高山,等.小型微型计算机系统,2018,39(5),995.
[1] 薛子凡, 邢志国, 王海斗, 李国禄, 刘喆. 面向结构健康监测的压电传感器综述*[J]. 《材料导报》期刊社, 2017, 31(17): 122-132.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed