Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 239-243    
  无机非金属及其复合材料 |
引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响
胡文龙, 刘赞群, 裴敏
中南大学土木工程学院,长沙 410075
Effect of Air Entraining Agent on Sulfate Crystallization Distress on Sulphoaluminate Cement Concrete
HU Wenlong, LIU Zanqun, PEI Min
School of Civil Engineering, Central South University, Changsha 410075
下载:  全 文 ( PDF ) ( 5342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 引气剂是常用于混凝土冻融破坏中提高混凝土抗冻性能的一种化学外加剂,其作用机理是在混凝土搅拌过程中引入大量气泡来改变混凝土的孔隙结构,从而降低冻融破坏中的结冰压力。混凝土的物理结晶破坏在破坏机理上与冻融破坏相似,都是混凝土孔隙中的液体在温度或湿度发生改变后形态发生改变从而挤压孔壁进而引起破坏,因此,从原理上看,引气剂的加入应该也能缓解混凝土的物理结晶破坏。本课题组在恒温、恒湿(温度(18±1) ℃,相对湿度(50±5)%)的环境下,分别将掺入0、0.5引气剂的硫铝酸盐水泥混凝土试件(w/c=0.45)半浸泡在10%硫酸钠溶液中,对浸泡35 d、70 d、130 d后混凝土水分蒸发区的破坏形貌、强度和质量损失率及其孔径孔隙变化进行分析,从而探究引气剂对混凝土物理结晶破坏的影响。结果表明:掺入引气剂后,改变了混凝土的孔径分布及孔隙形状,从而可以降低盐结晶破坏压力的影响,提高硫铝酸盐水泥混凝土抵抗硫酸钠盐结晶破坏的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡文龙
刘赞群
裴敏
关键词:  硫酸盐结晶破坏  引气剂  孔径分布  孔隙形状    
Abstract: Air-entraining agent is a chemical admixture used to improve frost resistance of concrete in concrete freeze-thaw damage. The mechanism of action is to introduce a large number of bubbles in the concrete mixing process to change the pore structure of the concrete and then reduce the icing pressure in the freeze-thaw damage. The physical crystallization damage of concrete is similar to the freeze-thaw damage in the failure mechanism. It is the change of the shape of the liquid in the pores of the concrete after the temperature or humidity changes. Therefore, in theory, the addition of air entraining agent should also alleviate the physical crystallization damage of concrete.So,in the environment of constant temperature and humidity (temperature (18±1) ℃, relative humidity (50±5)%), sulphoaluminate cement concrete specimens with 0, 0.5 air entraining agent were partially immersed in 10% sodium sulphate solution .The deformation morphology of concrete moisture evaporation zone, strength and mass loss rate and pore diameter change were analyzed after immersion for 35 d, 70 d and 130 d,in order to explore the effect of air entraining agent on the physical crystallization damage of concrete.The results show that the incorporation of air entraining agent will change the pore size distribution and pore shape of concrete. The proper amount of air entraining agent can improve the sulfate resistance of sulphoaluminate cement concrete, however, when the air entraining agent is excessively mixed, the concrete specimens became softer, which in turn leads to more severe strength loss.
Key words:  sulfate crystallization attack    air entraining agent    pore size distribution    pore structure
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU528  
作者简介:  胡文龙,中南大学土木工程学院硕士研究生,主要从事混凝土硫酸盐侵蚀领域的研究。刘赞群,中南大学教授。2009年毕业于中南大学,获土木工程材料博士学位。主要从事高铁用关键工程材料、水泥乳化砂浆、自密实混凝土和混凝土耐久性等方向的研究。国际期刊Construction and Building Materials和国内刊物《硅酸盐学报》的审稿人。近年来主持和参加多项国家自然科学基金,在国内外重要期刊发表学术论文20余篇,获省部级以上科研奖励3项zanqun.liu@csu.edu.cn
引用本文:    
胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
HU Wenlong, LIU Zanqun, PEI Min. Effect of Air Entraining Agent on Sulfate Crystallization Distress on Sulphoaluminate Cement Concrete. Materials Reports, 2019, 33(z1): 239-243.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/239
1 ACI Committee 201. ACI 201.2R-16,2010.
2 Rivas T, Alvarez E, Mosquera M J, et al. Construction & Building Materials,2010, 24(5),766.
3 Benavente D, Cura M A G D, Fort R, et al. Engineering Geology,2004,74(1-2),113.
4 Espinosa-Marzal R M, Scherer G W. Environmental Earth Sciences,2009, 56(3-4),605.
5 张永存,李青宁.混凝土,2015(3),31.
6 张士萍,邓敏,吴建华,等. 武汉理工大学学报,2008,30(6),56.
7 Stark D. Portland Cement Association,Skokie,Illinois,USA,2002,pp.28.
8 邓德华,刘赞群,Geert D S.硅酸盐学报,2012,40(2),175.
9 刘赞群,候乐,邓德华,等. 硅酸盐学报,2017,45(11),1621.
10 刘赞群, 胡文龙, 邓德华,等. 硅酸盐学报,2018,46(5),663.
11 刘赞群,李湘宁,邓德华,等. 硅酸盐学报,2016,44(8),1173.
12 Yang C C, Cho S W, Wang L C. Materials Chemistry and Physics,2006,100(2-3),203.
13 Scherer G W. In: International Rilem Tc 186-ISA Workshop and Internal Sulfate Attack and Delayed Ettringite Formation. Villars,Switzerland,2002.
14 Benavente D, et al. Journal of Crystal Growth,2004,260(3-4),532.
15 Steiger, M . Journal of Crystal Growth,2005,282(3-4),455.
16 Cultrone G, Russo L G, Calabrò C, et al. Environmental Geology,2008, 54(6),1271.
17 Espinosa R M, Franke L, Deckelmann G. Construction & Building Materials,2008,22(7), 1350.
18 Ruedrich J, Siegesmund S. Environmental Geology,2007,52(2),225.
19 Scherer G W. Cement & Concrete Research,2004,34(9),1613.
20 Benavente D, Cueto N, Martínez-Martínez J, et al. Environmental Geology,2007,52(2), 215.
[1] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed