Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 165-170    
  无机非金属及其复合材料 |
高机械品质因数压电陶瓷材料的研究进展及应用
褚涛1,2, 王五松1,2, 王学杰1, 张田才2, 杨桂2, 翟继卫3
1 贵州振华电子信息产业技术研究有限公司,贵阳 550018
2 贵州振华红云电子有限公司,贵阳550018
3 同济大学材料科学与工程学院,上海 201804
Research Progress and Application of High Mechanical Quality Factor Piezoelectric Ceramics
CHU Tao1,2, WANG Wusong1,2, WANG Xuejie1, ZHANG Tiancai2, YANG Gui2, ZHAI Jiwei3
1 Guizhou Zhenhua electronic Information Industry Technology Research Co., Ltd, Guiyang 550018
2 Guizhou Zhenhua Hongyun Electronics Co., Ltd, Guiyang 550018
3 School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 2198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文从压电陶瓷的物理机理、机械品质因数Qm及其影响因素如晶粒尺寸、晶格常数、畴壁运动、空间电荷等方面详细阐述了高Qm压电陶瓷材料研究的理论基础,随后介绍了高Qm压电陶瓷材料的几种体系及其研究现状。指出了掺杂改性、探索新体系和新工艺是提高压电陶瓷材料高Qm的有效途径,并对高Qm压电陶瓷器件进行了简单介绍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚涛
王五松
王学杰
张田才
杨桂
翟继卫
关键词:  Qm压电陶瓷  晶格常数  空间电荷  机械品质因数    
Abstract: In this paper, the theoretical basis of high mechanical quality factor (Qm) piezoelectric ceramic materials is elaborated from the physical mec-hanism, Qm and its influencing factors such as grain size, lattice constant, domain wall motion and space charge, etc. Then several systems and research status of high Qm piezoelectric ceramics are introduced. It is pointed out that doping modification, exploring new systems and processes are effective ways to improve the high Qm of piezoelectric ceramic materials.Finally, the article gives a brief introduction to high Qm piezoelectric ceramic devices.
Key words:  high Qm piezoelectric ceramics    lattice constant    space charge    mechanical quality factor
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TM282  
作者简介:  褚涛,2013年7月毕业于中国科学院福建物质结构研究所,获得工程硕士学位。于2013年7月起在贵州振华红云电子有限公司工作,主要从事压电陶瓷材料和器件的研发。王五松,贵州振华电子信息产业技术研究有限公司,高级工程师。2012年7月毕业于同济大学,理学博士学位。主要从事压电陶瓷材料,微波铁氧体陶瓷材料及微波功能器件的研发。曾多次参与解放军总装备部及贵州省科技计划项目,在国内外重要期刊发表文章20多篇、专利3篇。554032895@qq.com
引用本文:    
褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
CHU Tao, WANG Wusong, WANG Xuejie, ZHANG Tiancai, YANG Gui, ZHAI Jiwei. Research Progress and Application of High Mechanical Quality Factor Piezoelectric Ceramics. Materials Reports, 2019, 33(z1): 165-170.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/165
1 钟维烈.铁电体物理学,科学出版社,1996.
2 雷淑梅,匡同春,白晓军.佛山陶瓷,2005,15(3),36.
3 李丽,何宏,林玉池.压电与声光,2010,32(6),942.
4 莫喜平.物理,2009,38(3),149.
5 石维,朱建国,肖定全,等.压电与声光,2013,35(4),549.
6 侯育冬,高峰,朱满康,等.电子元件与材料,2003,22(11),160.
7 朱婷.电子科技,2016,25(9),13.
8 孔凡国,陈然然,段文科.功能材料与器件,2015,21(5),133.
9 David Ruiz, José Carlos Bellido, Alberto Donoso. Archives of Computational Methods in Engineering,2018,25,313.
10 Alberto Donoso, José Carlos Bellido. Computer Methods in Applied Mechanics and Engineering,2018,338,27.
11 邓云云.低频纵-径振动转换水声换能器的研究.硕士学位论文,陕西师范大学,2018.
12 曹龙轩, 朱云龙, 金学健,等.压电与声光,2018,40(3),384.
13 周瑜, 涂其捷, 杨荣耀,等.声学技术,2018,37(3),286.
14 张卫珂,张敏,尹衍升.现代技术陶瓷,2005,1,38.
15 廖擎玮,陈小随,郭栋.应用声学,2013,32(6),508.
16 石伟丽,邢志国,王海斗.润滑与密封,2014,39(5),111.
17 Yamauchi F, Takahashi M. Journal of the Physical Society of Japan,1970,28,313.
18 李远, 秦自楷, 周志刚, 等. 压电与铁电材料的测量.第一版,科学出版社,1984.
19 Sadayuki Takahashi, Masao Takahashi. Japanese Journal of Applied Phy-sics,1972,11(1),31.
20 Masao Takahashi. Journal of the Physical Society of Japan,1970,9(10),1236.
21 刘静,丁凌峰,周静.功能材料,2000,31(2),18.
22 杜红亮,杜红娜,周万城,等.硅酸盐学报,2005,33(6),776.
23 山东大学压电铁电物理教研室.压电陶瓷及其应用,山东人民出版社,1974.
24 祁卫.PMN-PZT系压电陶瓷的性能和掺杂改性研究.硕士学位论文,山东大学,2014.
25 Tipakontitikul R, Suwan Y, Niyompan A. Ferroelectrics,2009,381,144.
26 刘亚威.铌锰—锆钛酸铅压电陶瓷材料的研究.硕士学位论文,天津大学,2009.
27 Li L, Yao Y, Han M. Ferroelectrics,1980,28(1),403.
28 祝兰.PMS-PZT压电陶瓷的制备及性能研究.硕士学位论文,暨南大学,2010.
29 Rahed A I, Shashank P, Ahmed A. Journal of Materials Sciences,2007,42,10053.
30 Deng Y, Zhou D, Zhuang Z. Journal of Wuhan University of Technology-Materials Science Edition,2007,22(4),722.
31 Li H, Yang Z, Wei L, et al. Materials Research Bulletin,2009,44,638.
32 Liao Q, Chu X, Zhang J, et al. In: Proceedings of the 3rd International Symposium on Advances in Functional Materials. Changchun, China,2012.
33 Du H, Pei Z, Zhou W, et al. Materials Science and Engineering A,2006,421,286.
34 杜景红,孙加林,史庆南,等.昆明理工大学学报,2002,27(6),32.
35 宗喜梅,杨祖培,李慧.功能材料,2006,37(3),383.
36 刘少恒,晁小练,皇晓辉,等.陕西师范大学学报,2012,40(3),58.
37 Yoo J H,Yoon H S,Yoon K H,et al. In: Ultrasonics Symposium 1998. Sendai, Japan,1998.
38 Yoo J H,Lee Y W,Yoon K H,et al.Japanese Journal of Applied Physics,2001,40(5A),3256.
39 沈建兴,李传山,张雷.压电与声光,2008,30(2),193.
40 贺连星,高敏,李承恩.无机材料学报,2001,16(2),337.
41 乔骄阳,林书玉.陕西师范大学学报(自然科学版),2016,44(1),43.
42 Du Jinlong, Hu Junhui, KingJet Tseng.Ceramics International,2004,30,1797.
43 左斌,邵华. 机械设计与研究,2013,29(2),26.
44 胡淑芳,上官明宇.声学技术,2013,32(5),436.
45 秦雷, 鲜晓军, 贾俊博,等.压电与声光,2018,30(4),501.
46 Pang Zongqiang, Zhang Yue, Zhou Zeqing, et al. Nanotechnology and Precision Engineering,2018,1(1),23.
47 Liu Lige, Ge Weifeng, Meng Wenjie,et al. Review of Scientific Instruments,2018,89,033704.
48 宋晓龙.基于压电驱动的网孔型超声雾化器研究.硕士学位论文,南京航空航天大学,2017.
[1] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[2] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed