Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 158-160    
  无机非金属及其复合材料 |
化学气相沉积法较低温度下制备层状硫化钼薄膜的研究
苏文静1,2, 金良茂1,2, 金克武1,2, 王天齐1,2, 汤永康1,2, 甘治平1,2
1 中建材蚌埠玻璃工业设计研究院有限公司,蚌埠 233018
2 浮法玻璃新技术国家重点实验室,蚌埠 233018
Study on Layered MoS2 Films Grown by Chemical Vapor Deposition at Relatively Low Temperatures
SU Wenjing1,2, JIN Liangmao1,2, JIN Kewu1,2, WANG Tianqi1,2, TANG Yongkang1,2, GAN Zhiping1,2
1 (CNBM)Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu 233018
2 State Key Laboratory for Advanced Technology of Float Glass, Bengbu 233018
下载:  全 文 ( PDF ) ( 2184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硫化钼具有类似石墨烯的层状结构,是一种被广泛研究的过渡金属硫族化合物。层状二硫化钼是一种具有较高带隙的半导体,其具有好的光致发光特性以及光电子学特性,在晶体管、光伏、传感器件以及光催化分解水制备氢气等领域具有潜在的应用价值。目前,较高质量的二硫化钼层状薄膜主要是通过高温化学气相沉积法制备,一般制备温度较高,在850~1 000 ℃。本实验利用化学气相沉积法分别在650 ℃、675 ℃、700 ℃、725 ℃和750 ℃条件下制备层状二硫化钼薄膜。通过对不同温度下制备的样品进行光学形貌测试及拉曼光谱分析,得出在较低温度下温度对制备二硫化钼薄膜的形貌和单个片层的尺寸具有显著的影响,其中在725 ℃时制备的层状薄膜形貌和尺寸都较好。本工作为在较低温度下制备出高质量层状MoS2薄膜打下了较好的基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏文静
金良茂
金克武
王天齐
汤永康
甘治平
关键词:  化学气相沉积法  层状二硫化钼  拉曼光谱  二维层状材料    
Abstract: MoS2 is 2D layered transition metal dichalcogenides (TMDs), which has a layered structure similar to graphene, has been widely investigated. MoS2 will turn to a direct band gap semiconductor with a bandgap as high as 1.9 eV when reduced to a single-layered structure, and it also has a strongly enhanced photoluminescence effect and excellent nano- and opto-electronic properties, this makes single layer MoS2 a promising material for the next generation of nanoelectronics and optoelectronics and also a potential material for highly efficient photo catalytic H2 generation. As for preparation, chemical vapor deposition has been the most commonly used method for layered MoS2 growth. However, it is usually performed under a high temperature ranged around 850—1 000 ℃, which is very energy consumed. Here we explored the relatively low temperature situation, and have grown layered MoS2 films by chemical vapor deposition under the temperature under 650 ℃, 675 ℃, 700 ℃, 725 ℃ and 750 ℃. The as prepared samples were characterized with optical microscope (OM) and Raman spectroscopy. The results show that MoS2 can be grown under a temperature even low as 650 ℃, and the MoS2 triangles grown under 725 ℃ have the largest average area and the best morphology. The results of this experiment show that it is possible to grow MoS2 few layered films under a relatively low temperature, which would save more energy and be economic.
Key words:  chemical vapor deposition    layered MoS2    Raman spectroscopy    2D layered materials
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O649  
作者简介:  苏文静,中建材蚌埠玻璃工业设计研究院有限公司,浮法玻璃国家重点实验室工程师,2011年6月毕业于中科院宁波材料技术与工程研究所,获得工学硕士学位。目前从事二维材料的制备研究工作。甘治平,博士,教授级高工,浮法玻璃国家重点实验室薄膜技术研究所所长,主持过安徽省自然科学基金等大型项目,目前主要从事功能薄膜材料相关研究。Z.P.gan@163.com
引用本文:    
苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
SU Wenjing, JIN Liangmao, JIN Kewu, WANG Tianqi, TANG Yongkang, GAN Zhiping. Study on Layered MoS2 Films Grown by Chemical Vapor Deposition at Relatively Low Temperatures. Materials Reports, 2019, 33(z1): 158-160.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/158
1 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
2 Sundaram R S, Engel M, Lombardo A, et al. Nano Letters,2013,13(4),1416.
3 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012,7(11),699.
4 Mak K F, Lee C, Hone J, et al. Physical Review Letters,2010,105(13),136805.
5 Radisavljevic B, Whitwick M B, Kis A. ACS Nano,2011,5(12),9934.
6 Wang H, Yu L, Lee Y, et al. Nano Letters,2012,12(9),4674.
7 Li H, Yin Z, He Q , et al. Small,2012, 8(1),63.
8 Guo L, Yang Z, Marcus K, et al. Energy & Environmental Science,2018,11(1),106.
9 Li H, Shen H, Duan L, et al. Superlattices and Microstructures, 2018,117,336.
10 Liu Y, Zhang H, Ke J, et al. Applied Catalysis B: Environmental,2018, 228, 64.
11 Wang Z, Chen T, Chen W, et al. Journal of Materials Chemistry A,2013, 1(6),2202.
12 Peng L, Zhu Y, Chen D, et al. Advanced Energy Materials,2016,6(11),1600025.
13 宋欣,方舸,田欣.功能材料,2018,49(5),05180.
14 Radisavljevic B, Radenovic A, Brivio J, et al. Nature Nanotechnology,2011, 6(3),1470.
15 Liu N, Kim P, Ji H K, et al. ACS Nano,2014,8 (7), 6902.
16 Castellanos-Gomez A, Barkelid M, Goossens A M, et al. Nano Letters, 2012,12(6), 3187.
17 Huang Y, Wu J, Xu X, et al. Nano Research,2013,6(3),200.
18 顾品超, 张楷亮, 冯玉林, 等.物理学报,2016,65(1), 018102.
19 董艳芳,何大伟,王永生,等.物理学报,2016, 65(12),128101.
20 Cong C, Shang J, Wu X, et al. Advanced Optical Materials,2014,2(2),131.
21 Monk P M S, Ali T, Partridge R D. Solid State Ionics,1995,80(1-2),75.
22 Gueerfi A, Paynter R W, Lê H Dao. Journal of the Electrochemical So-ciety,1995,142(10), 3457.
23 Lee C, Yan H, Brus L E , et al. ACS Nano,2010,4(5),2695.
24 Lin Y C, Zhang W, Huang J K, et al. Nanoscale,2012,4(20),6637.
25 Ji Q, Zhang Y, Zhang Y et al. Chemical Society Reviews,2015,44(9),2587.
26 Lee Y H, Zhang X Q, Zhang W, et al. Advanced Materials,2012,24(17),2320.
[1] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[2] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[3] 熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
[4] 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed