Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 145-148    
  无机非金属及其复合材料 |
不同铺层角含孔复合材料板拉伸性能数值模拟
张谦
中国航发北京航空材料研究院熔铸中心,北京 100095
Simulation of Tensile Behavior of Composite Laminate Containing a Hole with Different Ply Angles
ZHANG Qian
Casting Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 4697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料的失效行为与复合材料内部应力状态有关。含孔复合材料板由于孔边应力集中,失效经常发生于孔边,因此有必要研究含孔复合材料的拉伸性能。基于ABAQUS商用有限元分析软件建立了含孔碳纤维复合材料层合板有限元模型,数值模拟了含孔复合材料层合板的拉伸力学性能,分析了不同铺层角对孔边应力和应变分布的影响。研究结果表明,正交0°/90°铺层能有效缓解孔边应力集中,提高含孔复合材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张谦
关键词:  铺层角  复合材料层合板  开孔拉伸  失效行为  应力集中    
Abstract: The failure behavior of composite laminate is correlation with the inner stress state. The failure is usually occurred near the hole for open-hole tension laminate due to the stress concentration at the hole. Therefore, it is necessary to investigate the tensile behavior of composite laminate containing a hole with different ply angles. The finite element model of carbon fiber reinforced composite laminate was built up using ABAQUS commercial software, and the tensile behavior of composite laminate containing a hole with different ply angles was simulated. The effect of ply angles on the stress and stain distribution of the laminate was analyzed. The simulation results show that the 0°/90° ply can relief the stress concentration near the hole and improve the mechanical properties of composite laminate
Key words:  ply angle    composite laminate    open-hole tension    failure behavior    stress concentration
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB332  
作者简介:  张谦,中国航发北京航空材料研究院熔铸中心工程师,2008年9月至2012年6月,在中国民航大学获得自动化工学学士学位。研究工作主要围绕先进复合材料开展力学性能的基础理论和应用研究。工作期间,获得“航空院优秀青年”称号。491278049@qq.com
引用本文:    
张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
ZHANG Qian. Simulation of Tensile Behavior of Composite Laminate Containing a Hole with Different Ply Angles. Materials Reports, 2019, 33(z1): 145-148.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/145
1 Hao W, Ge D, et al. Polymer Testing,2012,31(4),520.
2 Chen H, Zhao Q, et al. Mechanics of Advanced Materials and Structures,2013,7(20),564.
3 Li F, Zhao Q L, et al. Composite Structures,2010,92(10),2400.
4 郝文峰, 陈新文, 等.航空材料学报,2015(2),90.
5 郝文峰, 原亚南, 等.玻璃钢/复合材料,2015(4),22.
6 郝文峰, 原亚南, 等.塑料工业,2015(3),123.
7 郝文峰, 郭广平, 等.玻璃钢/复合材料,2016(1),29.
8 Hao W, Tang C, et al. Fibers and Polymers,2015,16(9),2028.
9 Hao W, Yao X, et al. Engineering Fracture Mechanics,2015,134,354.
10 关志东, 黎增山, 等.复合材料学报,2012,29(3),167.
11 黎增山, 关志东, 等.复合材料学报,2012,29(1),169.
12 霍世慧, 王富生, 等.应用力学学报,2009,26(3),580.
13 Caminero MA, Lopez-Pedrosa M, et al. Composites Part B: Enginee-ring,2013,53,76.
14 Pierron F, Green B, et al. Composites Part A: Applied Science and Manufacturing,2007,38(11),2307.
15 Pierron F, Green B, et al. Composites Part A: Applied Science and Manufacturing,2007,38(11),2321.
[1] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[4] 陈毓焘, 李文晓, 金世奇. 铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 11-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed