Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 126-131    
  无机非金属及其复合材料 |
NiFe2O4磁流体润滑性实验研究
恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷
昆明理工大学机电工程学院,昆明 650500
Experimental Study on the Lubricity of NiFe2O4 Magnetic Fluid
GONG Fei, WU Zhangyong, ZHU Qichen, ZHANG Lianzhi, GUO Cuixia, WANG Xueting
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 2541KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为验证水基NiFe2O4磁流体代替传统液压介质的可行性,采用磁流体液压介质解决叶片-定子副磨损问题。首先通过两步法制备水基NiFe2O4磁流体,根据叶片泵对介质粘度的要求,选出分散稳定性较强、粘度特性较好的磁流体。然后从试验方法、设备、仪器、工具、表征量及影响因素等方面拟定试验方案,其中表征量为摩擦因数(μ)和磨损量(Δm),影响因素包括分散剂、降粘剂、基础液、浓度、磁感应强度、负载力、下试样轴转速、摩擦时间,并以46#抗磨液压油作为对照。最后根据试验结果分析相关机理,并得出在无磁场条件下,磁流体浓度为5%时润滑性较好,施加磁场后,当磁感应强度达到最大,磁流体浓度为6%时,润滑性比液压油好,为磁流体在液压传动领域的应用提供了一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
恭飞
吴张永
朱启晨
张莲芝
郭翠霞
王雪婷
关键词:  水基NiFe2O4磁流体  液压介质  摩擦因数  磨损量  润滑性    
Abstract: To verify the feasibility of water-based NiFe2O4 magnetic fluid replacing traditional hydraulic medium, the wear problem of blade-stator pair was solved by using magnetic fluid hydraulic medium. Firstly, water-based NiFe2O4 magnetic fluid was prepared by two-step method. According to the requirement of vane pump for medium viscosity, magnetic fluids with strong dispersion stability and good viscosity characteristics were selected. Then, from the aspects of test method, equipment, instrument, tool and influencing factors, the test scheme was drawn up. Among them, friction coefficient (μ) and wear rate (Δm) were characterized. Influencing factors include dispersant, viscosity reducer, base fluid, concentration, magnetic induction strength, load force, downward sample shaft speed and friction time, 46 # anti-wear hydraulic oil was used as a reference object for comparison. Finally, according to the test results, the relevant mechanism was analyzed. In the absence of magnetic field, the lubrication of magnetic fluid with a concentration of 5% was better. After the magnetic field was applied, the lubricity was better than that of hydraulic oil when the magnetic induction intensity reaches the maximum and the concentration of magnetic fluid was 6%. This result provides a re-ference value for the application of magnetic fluid in the field of hydraulic transmission.
Key words:  water-based NiFe2O4 magnetic fluid    hydraulic medium    friction factor    wearing capacity    lubrication
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51165012)
作者简介:  恭飞,2016年6月毕业于昆明理工大学,获得工程学士学位。于2017年9月至今在昆明理工大学机电工程学院功能流体应用与矿山机电工程研究所培养学习,主要从事流体传动与控制研究。吴张永,昆明理工大学机电工程学院功能流体应用与矿山机电工程研究所,所长。1963年5月生,1996年获机械制造及自动化专业硕士学位,1996年破格评为高级工程师,2004年评为教授。主要研究方向为:水基液压传动技术、电液数字控制技术、新型液压介质、元件及系统。近年来,主持及参与完成科研项目20余项,发表论文50余篇,参编教材1部、专著1部,获云南省科技进步一等奖1项、三等奖2项,获发明专利13项、实用新型专利60余项。zhyongwu63@163.com
引用本文:    
恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
GONG Fei, WU Zhangyong, ZHU Qichen, ZHANG Lianzhi, GUO Cuixia, WANG Xueting. Experimental Study on the Lubricity of NiFe2O4 Magnetic Fluid. Materials Reports, 2019, 33(z1): 126-131.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/126
1 相鑫海,杨峰,李云涛.机械,2010,37(7),78.
2 Deysarkar A K, Clampitt B H. Synthetic Lubrication, 1988, 5(2), 105.
3 李学慧,李艳琴.软磁液体智能材料,科学出版社,2014.
4 王安蓉,徐刚,舒纯军.磁性液体及其应用,西南交通大学出版社,2010.
5 Uhlmann E, Spur G, Bayat N, et al. Magnetism and Magnetic Mate-rials, 2002, 252(1),336.
6 王利军,郭楚文,杨志伊,等.润滑与密封,2006(9),30.
7 王利军,郭楚文,杨志伊,等.中国矿业大学学报,2007,36(6),833.
8 冯雪君,杨志伊.中国矿业大学学报,2007,36(5),653.
9 陈善飞,郑敏华,王正良,等.兵工学报,2009,30(4),457.
10 陈善飞,顾邦明,龚雁,等.计量学报,2014,35(4),374.
11 Shen Cong, Huang Wei, Ma Guoliang, et al. Surface & Coatings Technology,2009,204(4),433.
12 Andablo-Reyes E, Hidalgo-álvarez R, de Vicente J. Soft Matter,2011,7(3),880.
13 Huang W, Shen C, Liao S, et al. Tribology Letters,2011,41(1),145.
14 Huang W, Wu W B, WangX L. The European Physical Journal Applied Physics,2012,59(3),994.
15 Huang Wei, Liao Sijie, Wang Xiaolei. Applied Surface Science,2012,258(7),3062.
16 Liao Sijie, Huang Wei, Wang Xiaolei. Journal of Tribology,2012,134(2),390.
17 Chen W, Huang W, Wang X. Tribology International,2014,72(4),172.
18 Ke H, Huang W, Wang X. Tribology International,2016,93,318.
19 Shahrivar K, Ortiz A L, de Vicente J. Tribology International. 2014, 78(4),125.
20 Shahrivar K, de Vicente J. Tribology Letters,2014,56(2),281.
21 史修江,王优强.机械设计与制造,2013(5),149.
22 Shi X, Huang W, Wang X. Lubrication Science, 2017, 30(2),73.
23 高传平.磁性和黏土纳米颗粒在润滑油中的摩擦学性能研究.博士学位论文,华南理工大学,2014.
24 乔玉林,徐滨士.纳米微粒的润滑和自修复技术,国防工业出版社,2005.
25 黄胜军.抗磨液压油抗磨性能的模拟台架评定试验研究.硕士学位论文,同济大学,2005.
26 Cann P M E, Damiens B, Lubrecht A A. Tribology International, 2004, 37(10),859.
[1] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[2] 邱兆岭, 陈文刚, 环鹏程, 李创业. 表面织构参数对渗氮304钢在纳米微粒添加剂润滑油作用下摩擦特性的影响[J]. 材料导报, 2018, 32(18): 3217-3222.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed