Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2354-2361    https://doi.org/10.11896/cldb.18050159
  无机非金属及其复合材料 |
基于UDEM-ACE方法的ECC配合比优化设计
李晓琴, 杨潇, 丁祖德, 申林方, 杜茜
昆明理工大学建筑工程学院,昆明 650500
Optimized Mix Proportion Design of ECC Based on the UDEM-ACE Method
LI Xiaoqin, YANG Xiao, DING Zude, SHEN Linfang, DU Xi
Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 2873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高韧性水泥基复合材料(ECC)相对于普通混凝土材料具有较高的极限拉伸应变能力,可以有效解决混凝土基础设施的开裂、渗漏水问题。ECC的力学性能严重依赖于原材料性能,而各地原材料性能均有差异;同时,ECC性能的优异性可通过调节其配合比进行控制。采用基于均匀试验设计方法(UDEM)与非参数回归分析(NPRA)中的交互式条件期望算法(ACE)相结合的配合比设计方法进行ECC配合比设计,获得云南昆明地区的ECC优化配合比。通过轴心抗拉试验和薄板四点弯曲试验进行ECC优化配合比试验验证,同时采用扫描电子显微镜随机检测纤维的分散情况。结果表明,基于UDEM-ACE方法得到的ECC优化配合比试块具有较高的极限拉伸应变能力和能量吸收能力,且纤维分布均匀。UDEM-ACE配合比设计方法具有良好的可行性和可靠性,能够为其他地区的ECC配合比优化设计以及其他水泥基体材料的配合比设计提供理论及实践指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓琴
杨潇
丁祖德
申林方
杜茜
关键词:  高韧性水泥基复合材料(ECC)  配合比优化设计  均匀试验-交互式条件期望(UDEM-ACE)算法  极限拉伸应变  应变硬化    
Abstract: High-performance engineered cementitious composites (ECC) have a high ultimate tensile strain compared with the normal concrete, which could be used to prevent the cracking and leakage problems for concrete infrastructure. The mechanical properties of ECC strongly depended on the raw materials. Meanwhile, based on the same raw materials, ECC material properties are mainly controlled by its mix proportion. Based on the materials and industrial wastes in Kunming Yunnan province, the uniform design experiment method (UDEM) with alternating conditional expectations (ACE) which is a non-parametric regression analysis (NPRA) method are chosen to obtain the optimal mix proportion range of ECC. The axial tensile tests and thin plate four-point bending test were conducted, and the scanning electron microscope instrument was used to randomly detect fiber dispersion in the tested specimens. The verification tests improved that the optimized ECC mix proportion specimens, which were obtained based on the UDEM-ACE method, gave large ultimate tensile strain capacity and energy absorption capacity, and the fiber distribution was uniformed. Some reference values for the application of ECC mix proportion and mixing process based on Kunming in Yunnan Province are provided. This paper can provide theoretical and practical guidance for the mix proportion optimization design of ECC for other regions and the design for other cement-based materials as well.
Key words:  engineered cementitious composites (ECC)    optimized mix proportion design    uniform design experiment-alternating conditional expectations (UDEM-ACE) method    ultimate tensile strain    strain hardening
                    发布日期:  2019-06-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51768028;51308271;51508253)
通讯作者:  dzdvsdt@163.com   
作者简介:  丁祖德,昆明理工大学副教授。2012年6月获中南大学桥梁与隧道工程专业工学博士学位,同年进入昆明理工大学任教。主要研究方向为地下结构服役性能评价及加固技术、先进材料在地下结构中应用等方面。主持国家自然科学基金2项,云南省自然科学基金1项,以第一作者在国内外学术期刊上发表论文20余篇,申请发明专利6项,其中授权2项。担任国家自然科学基金通讯评审人、多个学术期刊审稿人、中国土木工程学会隧道及地下工程分会建设管理与青年工作者专业委员会委员。李晓琴,昆明理工大学副教授。2012年6月毕业于英国爱丁堡大学结构工程专业,获博士学位。主要研究方向为既有结构评价与加固修复和新型土木工程材料的研发与应用。主持国家自然科学基金、云南省科技项目和教育部留学回国人员科研启动基金项目各1项。目前以第一作者或通讯作者发表10余篇期刊论文并申请发明专利13项。
引用本文:    
李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
LI Xiaoqin, YANG Xiao, DING Zude, SHEN Linfang, DU Xi. Optimized Mix Proportion Design of ECC Based on the UDEM-ACE Method. Materials Reports, 2019, 33(14): 2354-2361.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050159  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2354
1 Li V C. Journal of Advanced Concrete Technology, 1998, 1(3), 1.
2 Li V C. ACI Special Public Concrete, 2002, 206(23), 373.
3 Li V C, Mishra D, Wu C. Materials and Structures, 1995, 28, 586.
4 Li V C. International Journal of Concrete Structures & Materials, 2012, 6(3), 135.
5 Li V C. Structures, 2009, 10(242), 2209.
6 Xu S L, Li H D. China Civil Engineering Journal, 2008, 41(6), 45(in Chinese).
徐世烺, 李贺东. 土木工程学报, 2008, 41(6), 45.
7 Guan B S. Key techniques of the tunnel by mining method, China Communications Press, China, 2016(in Chinese).
关宝树. 矿山法隧道关键技术, 人民交通出版社, 2016.
8 Cao L. Experimental study on the mechanical property of PVA-fiber reinforced cementitious composites. Master's Thesis, Henan Polytechnic University, China, 2010(in Chinese).
曹磊. PVA纤维增强水泥基复合材料力学性能试验研究. 硕士学位论文, 河南理工大学, 2010.
9 Li D W. The mechanical properties of PVA fiber reinforced cement-based composites and plate dynamic response analysis under explosion loading. Master's Thesis, Chang'an University, China, 2013(in Chinese).
李东苇. PVA纤维增强水泥基复合材料力学性能及板的爆炸动力响应分析. 硕士学位论文, 长安大学, 2013.
10 Li S H. Experimental research on the mechanical properties of PVA fiber reinforced cementitious composite. Master's Thesis, Hubei University of Technology, China, 2011(in Chinese).
李素华. PVA纤维增强水泥基复合材料力学性能试验研究. 硕士学位论文, 湖北工业大学, 2011.
11 Li Y, Liu Z J, Liang X W. Engineering Mechanics, 2013, 30(1), 322(in Chinese).
李艳, 刘泽军, 梁兴文. 工程力学, 2013, 30(1), 322.
12 Jia F G, Song G S. Civil engineering material, Tsinghua University Press, China, 2016(in Chinese).
贾福根, 宋高嵩. 土木工程材料, 清华大学出版社, 2016.
13 Zuo W, Jiaqiang E, Liu X, et al. Applied Thermal Engineering, 2016, 103, 945.
14 Shi X M, Liu B G, Xiao J. Rock and Soil Mechanics, 2015, 36(5), 1357(in Chinese).
史小萌, 刘保国, 肖杰. 岩土力学, 2015, 36(5), 1357.
15 Liu J H, LI W X, Liu Y S, et al. Rock and Soil Mechanics, 2018, 39(2), 657(in Chinese).
刘金辉, 李文枭, 刘宇森, 等. 岩土力学, 2018, 39(2), 657.
16 Fang K T, Ma C X. Orthogonal and uniform experimental design, Science Press, China, 2001(in Chinese).
方开泰, 马长兴. 正交与均匀试验设计, 科学出版社, 2001.
17 Deng M K, Sun H Z, Liang X W, et al. Industrial Construction, 2014, 44(10), 107(in Chinese).
邓明科, 孙宏哲, 梁兴文, 等. 工业建筑, 2014, 44(10), 107.
18 Liu Z B, Chen J B, Liu J J. Optimization methods and applications, Petroleum Industry Press, China, 2013(in Chinese).
刘志斌, 陈军斌, 刘建军. 最优化方法及应用案例, 石油工业出版社, 2013.
19 Zhou M, Sun S D. Genetic algorithms: Theory and applications, National Defense Industry Press, China, 1999(in Chinese).
周明, 孙树栋. 遗传算法原理及应用, 国防工业出版社, 1999.
20 Tian J W, Gao M J. Artificial neural network algorithms: Research and applications, Beijing Institute of Technology Press, China, 2006(in Chinese).
田景文, 高美娟. 人工神经网络算法研究及应用, 北京理工大学出版社, 2006.
21 Xing W X, Xie J X. Modern optimization algorithms, Tsinghua University Press, China, 2006(in Chinese).
邢文训, 谢金星. 现代优化计算方法, 清华大学出版社, 2006.
22 Li S Y, Chen Y Q, Li Y. Ant colony algorithms with applications, Harbin Institute of Technology Press, China, 2004(in Chinese).
李士勇, 陈永强, 李研. 蚁群算法及其应用, 哈尔滨工业大学出版社, 2004.
23 Fang K T, Wang Y. Number-theoretic methods in statistics, Science Press,China, 1996(in Chinese).
方开泰, 王元. 数论方法在统计中的应用, 科学出版社, 1996.
24 Yang S J, Li Y H. Statistics and Decision, 2017(6), 31(in Chinese).
杨世娟, 李英华. 统计与决策, 2017(6), 31.
25 Zhang S Y, Ge X Q, Wang B. Journal of Quantitative and Technical Economics, 1997(10), 60(in Chinese).
张守一, 葛新权, 王斌. 数量经济技术经济研究, 1997(10), 60.
26 Huang X Y. Statistics, Chongqing University Press, China, 2015(in Chinese).
黄小艳. 统计学, 重庆大学出版社, 2015.
27 Fang K T. Applied regression analysis, Science Press, China, 1988(in Chinese).
方开泰. 实用回归分析, 科学出版社, 1988.
28 Breiman L, Friedman J H. Publications of the American Statistical Asso-ciation, 1985, 80(391), 580.
29 Insightful Corporation. S-PLUS 8 Guide to statistics, Seattle, USA, 2007.
[1] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[2] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[3] 刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed