Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2925-2931    https://doi.org/10.11896/j.issn.1005-023X.2018.17.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响
刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭
昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
Effects of Temperature and CO2 on Pore Structure and Surface Fractal Dimension of Pyrolytic Carbonized Biochar Briquettes
LIU Zewei, YAN Sijia, XIA Zihao, TIAN Lin, LIU Yukang, WANG Jingcheng, HU Jianhang
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2757KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过SEM分析和氮气等温吸附实验,对不同热解温度和CO2浓度下热解成型炭样进行孔隙结构特性分析,同时根据FHH方程计算了炭样的孔隙表面分形维数DS,研究了孔隙结构与表面分形维数的关系以及温度和CO2浓度对两者关系的影响。结果表明:表面分形维数可以较好地表征孔隙结构的复杂性和炭样表面不规则性,但是与BET比表面积(SBET)、总孔积和平均孔径没有直接联系,而是与微孔面积和微孔容积含量占比较为一致。在氮气热解情况下,600 ℃时炭样孔隙结构最为发达,SBETDS都达到最大值。在CO2和N2混合气氛下,SBET随着CO2浓度的增加而变大,而DS则是先减小后变大,当CO2浓度大于10%后才会随着CO2浓度的增加而变大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泽伟
闫思佳
夏子皓
田霖
刘煜康
王竟成
胡建杭
关键词:  热解温度  CO2浓度  成型炭  FHH方程  孔隙结构  表面分维    
Abstract: By applying different pyrolysis temperature and CO2 concentration conditions and using a fixed tube furnace, the present work prepared a series samples of biochar briquettes, whose pore structures and surface fractal dimensions were analyzed by SEM and nitrogen isothermal adsorption, and calculated using FHH method. The relationship between char samples’ pore structure and surface fractal dimension was investigated, as well as the effects of temperature and CO2 concentration on them. The results showed that surface fractal dimension could well characterize pore structural complexity and surface irregularity, as it coincides with content fraction of micropore area and volume, rather than with BET surface area, total pore volume and average pore size. Both BET surface area and surface fractal dimension of biochar briquette reach peak value at 600 ℃ pyrolysis temperature under pure nitrogen. Under the mixed atmosphere of CO2 and N2, the increment of CO2 concentration will lead to gradual increase of BET surface area, but a biphasic (decrease → increase) change in surface fractal dimension with an inflection point of 10% CO2 concentration.
Key words:  pyrolysis temperature    CO2 concentration    biochar briquette    FHH method    pore structure    surface fractal dimension
               出版日期:  2018-09-10      发布日期:  2018-09-19
ZTFLH:  TQ016  
基金资助: 国家自然科学基金(51376085);NSFC-云南联合基金(U1602272);云南省科技领军人才项目(2015HA019);国家重点实验室自主课题(CNMRCUTS1706)
通讯作者:  胡建杭: 男,教授,博士研究生导师,研究方向为可燃固体废弃物资源化技术 E-mail:hujh51@126.com   
作者简介:  刘泽伟:男,1992年生,硕士,研究方向为生物质成型热解制炭 E-mail:15096663728@163.com
引用本文:    
刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
LIU Zewei, YAN Sijia, XIA Zihao, TIAN Lin, LIU Yukang, WANG Jingcheng, HU Jianhang. Effects of Temperature and CO2 on Pore Structure and Surface Fractal Dimension of Pyrolytic Carbonized Biochar Briquettes. Materials Reports, 2018, 32(17): 2925-2931.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.005  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2925
1 He S S, Li W, Wang L Z, et al. Combustion characteristics and working condition optimization for wood and herb biomass[J]. Materials Review B: Research Papers,2017,31(3):50(in Chinese).
何姗姗,李薇,王灵志,等.木质与草本生物质燃烧特性及工况优化研究[J].材料导报:研究篇,2017,31(3):50.
2 Heidenreich S, Foscolo P U. New concepts in biomass gasification[J].Progress in Energy & Combustion Science,2015,46:72.
3 Cheah S, Jablonski W S, Olstad J L, et al. Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition[J].Green Chemistry,2016,18(23):6291.
4 Xie M, Lv D, Shi X, et al. Sorption of monoaromatic compounds to heated and unheated coals, humic acid, and biochar: Implication for using combustion method to quantify sorption contribution of carbonaceous geosorbents in soil[J].Applied Geochemistry,2013,35(4):289.
5 Tan X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J].Chemosphere,2015,125:70.
6 Wang S, Gao B, Zimmerman A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J].Bioresource Technology,2015,175:391.
7 Chen Y, Yang H, Wang X, et al. Biomass-based pyrolytic polyge-neration system on cotton stalk pyrolysis: Influence of temperature[J].Bioresource Technology,2012,107:411.
8 Obi O F. Evaluation of the physical properties of composite briquette of sawdust and palm kernel shell[J].Biomass Conversion & Biorefi-nery,2015,5(3):271.
9 Liu Z, Zhang F, Liu H, et al. Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties[J].Bioresource Technology,2018,249:983.
10 Wang Q, Han K, Gao J, et al. Investigation of maize straw char briquette ash fusion characteristics and the influence of phosphorus additives[J].Energy & Fuels,2017,31(3):2822.
11 Wang Q, Han K, Gao J, et al. The pyrolysis of biomass briquettes: Effect of pyrolysis temperature and phosphorus additives on the quality and combustion of bio-char briquettes[J].Fuel,2017,199:488.
12 Tumuluru J S, Hess J R, Boardman R D, et al. Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal[J].Industrial Biotechnology,2012,8(3):113.
13 Lee H M, Kim H G, An K H, et al. The effect of CO2 activation on the electrochemical performance of coke-based activated carbons for supercapacitors[J].Journal of Nanoscience & Nanotechnology,2015,15(11):8797.
14 Wang J, Xiong Z, Kuzyakov Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects[J].Global Change Biology Bioenergy,2016,8(3):512.
15 Deng L, Lu B, Li J, et al. Effect of pore structure and oxygen-containing groups on adsorption of dibenzothiophene over activated carbon[J].Fuel,2017,200:54.
16 Liu L. Effect of pore structure and surface chemical properties on adsorption properties of activated carbons[J].Chinese Journal of Environmental Engineering,2012,6(4):1299.
17 Khanmohammadi Z, Afyuni M, Mosaddeghi M R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar[J].Waste Management & Research,2015,33(3):275.
18 Chen D, Chen X, Sun J, et al. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar[J].Bioresource Technology,2016,216:629.
19 Usman A R A, Abduljabbar A, Vithanage M, et al. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry[J].Journal of Analytical & Applied Pyrolysis,2015,115:392.
20 Mandelbrot B B. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands[J].Proceedings of the National Academy of Sciences of the United States of America,1975,72(10):3825.
21 Kaizhi L I, Yang H, Chen Y, et al. Investigation of the forming property and fractal dimension of cotton char pore structure during biomass pyrolysis[J].Proceedings of the CSEE,2012,32:115.
22 He Wei, Liu Yuting, He Rong, et al. Combustion rate for char with fractal pore characteristics[J].Combustion Science & Technology,2013,185(11):1624.
23 Fu P, Hu S, Xiang J, et al. Study on the gas evolution and char structural change during pyrolysis of cotton stalk[J].Journal of Analytical & Applied Pyrolysis,2012,97(9):130.
24 Fu P, Hu S, Xiang J, et al. Evaluation of the porous structure deve-lopment of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate[J].Journal of Analytical & Applied Pyrolysis,2012,98(98):177.
25 Guizani C, Sanz F J E, Salvador S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties[J].Fuel,2014,116:310.
26 Kwon E E, Jeon Y J, Yi H. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/ga-sification) enhanced by carbon dioxide (CO2)[J].Bioresource Technology,2012,123(1):673.
27 Borrego A G, Garavaglia L, Kalkreuth W D. Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres[J].International Journal of Coal Geology,2009,77(s3-4):409.
28 Fu P, Yi W, Li Z, et al. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor[J].Energy Conversion & Management,2017,149:570.
29 Huo W, Zhou Z, Wang F, et al. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J].Fuel,2014,131(3):59.
[1] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[2] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[3] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed