Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 43-49    https://doi.org/10.11896/j.issn.1005-023X.2017.022.009
  材料研究 |
固体超强酸SO42-/TiO2-Al2O3的制备及其催化合成冰片*
王鹤林,蒋丽红,王亚明,焦星星,潘登
昆明理工大学化学工程学院,昆明 650500
Preparation of SO42-/TiO2-Al2O3 Soild Superacid Catalyst and Its Catalytic Activity for Borneol Synthesis
WANG Helin, JIANG Lihong, WANG Yaming, JIAO Xingxing, PAN Deng
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法和浸渍法制备了系列SO42-/TiO2-Al2O3固体超强酸催化剂,运用XRD、NH3-TPD、FT-IR、Py-FTIR、XPS、SEM等技术手段,研究了复合催化剂材料的结构与性质,初步探讨了固体超强酸SO42-/TiO2-Al2O3催化剂的构效关系,得到适宜的催化剂制备条件为:n(TiO2)/n(Al2O3)=1∶2、硫酸浸渍浓度1 mol/L、催化剂焙烧温度500 ℃。考察了物料物质的量比、催化剂用量、反应时间等对催化合成冰片的影响。结果表明,在物料物质的量比为1∶0.4,催化剂用量为α-蒎烯质量的7%,采用程序升温方式(65 ℃-1 h,75 ℃-4 h,90 ℃-1 h)加热的条件下,固体超强酸SO42-/TiO2-Al2O3催化剂的催化活性最高,α-蒎烯的转化率高达100%,龙脑的收率高达59.74%,SO42-/TiO2-Al2O3固体超强酸催化剂在重复使用6次的条件下,α-蒎烯的转化率均不变,龙脑的收率下降2.99%,催化剂的重复使用性良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹤林
蒋丽红
王亚明
焦星星
潘登
关键词:  SO42-/TiO2-Al2O3  固体超强酸  酯化  龙脑  催化  稳定性    
Abstract: A series of sulphated Al2O3-TiO2 mixed oxides were prepared by sol-gel and dipping process and used as catalysts in synthesis of borneol. The structure and properties of SO42-/TiO2-Al2O3 solid superacid catalysts were characterized by XRD, NH3-TPD, FT-IR, Py-FTIR, XPS, SEM techniques, and relationship between the catalytic performance and the structure was explored. The optimal condition for the preparation of the catalyst was obtained as follows: n(TiO2)/n(Al2O3)=1∶2, concentration of impregnation 1 mol/L, calcination temperature of the catalysts 500 ℃. Meanwhile, the effects of the dosage of level of catalyst, molar ratio of α-pinene to oxalic acid, reaction time on borneol synthesis reaction was investigated. The results showed that when the dosage of level of catalyst was 6% and molar ratio of α-pinene to oxalic acid was 1∶0.4, by using the program temperature heating method (65 ℃-1 h, 75 ℃-4 h, 90 ℃-1 h), i.e. the optimized condition, the resultant solid superacid SO42-/TiO2-Al2O3 catalyst performed the best catalytic effect to borneol synthesis reaction, as α-pinene was completely converted and high selectivity of borneol (58.63% yield) was achieved. After 6 times reuse, the catalyst still maintained good performance—α-pinene conversion rate unchanged, yield of borneol decreased by 2.99%.
Key words:  SO42-/TiO2-Al2O3    solid superacid    esterification    borneol    catalysis    stability
                    发布日期:  2018-05-08
ZTFLH:  O624  
基金资助: *国家自然科学基金(U1202265)
通讯作者:  王亚明,女,1960年生,博士,教授,博士研究生导师,研究方向为纳米材料催化剂在天然产物深加工中的应用E-mail:wym@Kmust.edu.cn   
作者简介:  王鹤林:男,1989年生,硕士研究生,研究方向为工业催化E-mail:1721758120@qq.com
引用本文:    
王鹤林,蒋丽红,王亚明,焦星星,潘登. 固体超强酸SO42-/TiO2-Al2O3的制备及其催化合成冰片*[J]. 材料导报编辑部, 2017, 31(22): 43-49.
WANG Helin, JIANG Lihong, WANG Yaming, JIAO Xingxing, PAN Deng. Preparation of SO42-/TiO2-Al2O3 Soild Superacid Catalyst and Its Catalytic Activity for Borneol Synthesis. Materials Reports, 2017, 31(22): 43-49.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.009  或          http://www.mater-rep.com/CN/Y2017/V31/I22/43
1 Yin Q, Shi X, Ding H, et al. Interactions of borneol with DPPC phospholipid membranes: A molecular dynamics simulation Study[J]. Int J Mol Sci, 2014,15(11):20365.
2 Ehrnh?ferressler M M, Fricke K, Pignitter M, et al. Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a salvia officinalis L. infusion using human gingival fibroblasts[J]. J Agric Food Chem, 2013,61(14):3451.
3 Li Y H, Sun X P, Zhang Y Q, et al. The antithrombotic effect of borneol related to its anticoagulant property[J]. Am J Chin Med, 2008,36(4):719.
4 Liu R, Zhang L, Lan X, et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: Involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway[J]. Neurosci, 2011,176:408.
5 Imanshahidi M, Hosseinzadeh H. The pharmacological effects of salvia, species on the central nervous system[J]. Phytother Res, 2006,20(6):427.
6 Kong Q X, Wu Z Y, Chu X, et al. Study on the anti-cerebral ischemia effect of borneol and its mechanism[J]. Afr J Tradit, Complementary Altern Med, 2014,11(1):161.
7 Almeida J R G D S, Souza G R, Silva J C, et al. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice[J]. Sci World J, 2013,2013(4):808460.
8 Bhatia S P, Letizia C S, Api A M. Fragrance material review on borneol[J]. Food Chem Toxicol, 2008,46(11):S77.
9 Zhao J Y, Yang L, Du S Y, et al. Comparative pharmacokinetic studies of borneol in mouse plasma and brain by different administrations[J]. J Zhejiang Uni, Sci B, 2012,13(12):990.
10 Zhao Zhendong, Liu Xianzhang. Fine chemical utilization of turpentine oil (Ⅱ)——perfumes derived from turpentine oil(A)[J]. Biomass Chem Eng, 2001,35(2):38(in Chinese).
赵振东,刘先章. 松节油的精细化学利用(Ⅱ)——松节油合成日化香料(上)[J].生物质化学工程, 2001,35(2):38.
11 Bai Yun. The general situation of flavor from turpentine oil[J]. China Food Addit, 2006(4):133(in Chinese).
白芸. 从松节油制得的食用香料概况[J].中国食品添加剂, 2006(4):133.
12 Liu S, Xie C, Yu S, et al. Esterification of α-pinene and acetic acid using acidic ionic liquids as catalysts[J]. Catal Commun, 2008, 9(7):1634.
13 Li Qun, Huang Shuyun. Study on catalytic synthesis of borneol with solid strong acid[J]. Chem Ind For Prod,1996(2):45(in Chinese).
黎群,黄淑云. 固体强酸催化合成冰片的研究[J].林产化学与工业,1996(2):45.
14 Yang Yiwen, Chen Huizong, Li Lei. Synthesis of borneol from α-Pinene catalyzed by solid superacid SO42-/ZrO2-NiO[J]. Adv Fine Petrochem,2009,10(9):36(in Chinese).
杨义文,陈慧宗,李蕾. 固体超强酸SO42-/ZrO2-NiO催化α-蒎烯合成龙脑[J].精细石油化工进展, 2009,10(9):36.
15 Wang Chunying, Wang Pan, Qi Xinhua, et al. Transformation of cellulose to levulinic acid over SO42-/Al2O3-TiO2 catalyst[J]. Chem Ind Eng Prog, 2009, 28(1):126(in Chinese).
王春英,王攀,漆新华,等. SO42-/Al2O3-TiO2转化纤维素生成乙酰丙酸[J].化工进展, 2009,28(1):126.
16 Han Huan, Jiang Lihong, Wang Yaming, et al. Preparation of Ni/TiO2-Al2O3 catalyst and its application in catalyzing hydrogrnation of turpentine[J]. Chem Ind For Prod,2016(1):92(in Chinese).
韩欢,蒋丽红,王亚明,等. Ni/TiO2-Al2O3催化剂的制备及其在松节油催化加氢反应中的应用[J]. 林产化学与工业,2016(1):92.
17 Jiang Y X, Chen X M, Mo Y F, et al. Preparation and properties of Al-PILC supported SO42-/TiO2, superacid catalyst[J]. J Mol Catal A: Chem, 2004,213(2):231.
18 Zhu Jianfei, Zhu Yiqing. The influence o preparation conditions of Al2O3/TiO2 upon acid sites properties[J]. Chin J Inorg Chem,1999,15(4):429(in Chinese).
朱建飞,朱毅青. Al2O3-TiO2二元氧化物的制备条件对酸性的影响[J].无机化学学报, 1999,15(4):429.
19 Schoonheydt R, Lunsford J. In infrared spectroscopic characterization of the adsorption and reactions of SO2 on MgO[J]. Asia-Pac Conf Commun Fourth Optoelectron Commun Conf, 1972(2):1446.
20 Yadav G D, Nair J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microp Mesop Mater, 1999,33(1-3): 1.
21 Zhai Long, Xu Lianchi, Liu xiguang, et al. Preparation and catalytic activity of mesoporous WO3-CeO2-ZrO2 solid superacid catalyst[J]. J Chin Silic Soc, 2016,44(7):1033(in Chinese).
翟龙,许连池,刘曦光,等. 介孔WO3-CeO2-ZrO2固体超强酸的制备与催化性能[J].硅酸盐学报,2016,44(7):1033.
22 Guan Guofeng, Tan Qiang, Wan Hui. Synthesis of tetraoctyl pyromellitate on solid superacid SO42-/TiO2- Al2O3[J]. Petrochem Technol, 2005,34(7):643(in Chinese).
管国锋,谭强,万辉. SO42- /TiO2-Al2O3固体酸催化剂的表征及其催化合成均苯四甲酸四异辛酯[J].石油化工,2005,34(7):643.
23 Xia Q H, Hidajat K, Kawi S. Effect of ZrO2 loading on the structure, acidity, and catalytic activity of the SO42-/ZrO2/MCM-41 acid catalyst[J]. J Catal, 2002,205(2):318.
24 Yu M S, Rubtsov V I, Vasilets V N, et al. EELS, XPS and IR study of C60·2S8 compound[J]. Synth Met, 1995,70(1):1381.
25 Dutta S N, Dowerah D, Frost D C. Study of sulphur in Assam coals by X-ray photoelectron spectroscopy[J]. Fuel, 1983,62(7): 840.
26 Wei F, Ni L, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity[J]. J Hazard Mater, 2008,156(1-3): 135.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[4] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[5] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[6] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[7] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[8] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[9] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[10] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[11] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[12] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[13] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[14] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[15] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed