Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 158-165    https://doi.org/10.11896/j.issn.1005-023X.2017.011.022
  金属腐蚀与防护 |
焊接接头局部腐蚀的研究进展*
李亚东, 唐晓, 李焰
中国石油大学(华东)机电工程学院,青岛 266580
Research Progress of Localized Corrosion of Welded Joints
LI Yadong, TANG Xiao, LI Yan
College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580
下载:  全 文 ( PDF ) ( 1212KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 因焊接接头局部腐蚀而造成的装置、设备和构件的失效事故屡见不鲜,造成了重大的经济损失甚至人身伤亡。然而迄今为止,对焊接接头局部腐蚀的行为、过程和机制的认识仍然比较有限。对国内外在焊接接头局部腐蚀的主要类型、研究方法、常见工程材料焊接接头的局部腐蚀行为以及腐蚀控制技术等方面的研究现状及主要进展做了详细介绍,最后对焊接接头局部腐蚀研究的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚东
唐晓
李焰
关键词:  焊接接头  局部腐蚀  非均匀结构  跨尺度表征    
Abstract: Owing to the local corrosion of welded joints, the invalidation and failure of the equipment, devices and components connected by welding engineering materials is a common occurrence, which has caused significant economic losses and even personal injuries. However, the understanding of localized corrosion behavior, process and mechanism of welded joints remains relatively li-mited. This paper reviewed the main corrosion forms, mainstream research methods and major advances in local corrosion of welded joints within common engineering materials, as well as feasible corrosion control techniques. Finally, the future research orientation of localized corrosion of welded joints is also proposed.
Key words:  welded joints    localized corrosion    heterogeneous structure    trans-scale characterization
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG171  
基金资助: 工业和信息化部海洋工程装备科研项目(工信部联装[2014]499号);国家自然科学基金(41676071)
通讯作者:  李焰:通讯作者,男,1972年生,博士,教授,研究方向为金属腐蚀与防护 E-mail:yanlee@upc.edu.cn   
作者简介:  李亚东:男,1991年生,博士研究生,研究方向为材料失效及表面工程 E-mail:lyd911121@126.com
引用本文:    
李亚东, 唐晓, 李焰. 焊接接头局部腐蚀的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 158-165.
LI Yadong, TANG Xiao, LI Yan. Research Progress of Localized Corrosion of Welded Joints. Materials Reports, 2017, 31(11): 158-165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.022  或          http://www.mater-rep.com/CN/Y2017/V31/I11/158
1 Jia X, Chang W, Huang J, et al. Corrosion reason analysis of one subsea pipeline in South China Sea[J]. Total Corrosion Control, 2013,27(8):33(in Chinese).
贾旭, 常炜, 黄俊, 等. 南海某海底管道腐蚀原因分析[J]. 全面腐蚀控制,2013,27(8):33.
2 Wintle J B, Pargeter R J. Technical failure investigation of welded structures (or how to get the most out of failures)[J]. Eng Failure Anal,2005,12(6):1027.
3 Fang N, Chen G M, Zhu H W, et al. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil Gas Storage Transportation,2014,33(1):99(in Chinese).
方娜, 陈国明, 朱红卫,等. 海底管道泄漏事故统计分析[J]. 油气储运,2014,33(1):99.
4 Zhu J, Xu L, Feng Z, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corros Sci,2016,111:391.
5 Lin X, Du M, Li C J, et al. Study on corrosion in seawater of welded DH36 steel[J]. Periodical of Ocean University of China,2013,43(3):70(in Chinese).
林鑫, 杜敏, 李成杰, 等. DH36 钢焊接件海水腐蚀行为研究[J]. 中国海洋大学学报: 自然科学版,2013,43(3):70.
6 Shirinzadeh-Dastgiri M, Mohammadi J, et al. Metallurgical investigations and corrosion behavior of failed weld joint in AISI 1518 low carbon steel pipeline[J]. Eng Failure Anal,2015,53:78.
7 Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones[J]. Corros Sci,2011,53(12):4026.
8 Yang R. Electrochemical corrosion behavior of API X80 pipeline steels in NACE solution[D]. Qingdao:China University of Petro-leum(East China),2015(in Chinese).
杨瑞. X80管线钢在NACE溶液中的腐蚀电化学行为研究[D]. 青岛: 中国石油大学(华东),2015.
9 Garcia C, Martin F, Tiedra P, et al. Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell[J]. Corros Sci,2008,50(4):1184.
10 Garcia C, Tiedra M P, Blanco Y, et al. Intergranular corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell[J]. Corros Sci,2008,50(8):2390.
11 Li X M, Zou Y, Zhang Z W, et al. Susceptibility to intergranular corrosion of Super 304H stainless steel welded joint[J]. Trans China Welding Institution,2010,31(11):77(in Chinese).
李新梅, 邹勇, 张忠文, 等. Super304H钢焊接接头的晶间腐蚀敏感性[J]. 焊接学报,2010,31(11):77.
12 Aquino J M, Rovere C A D, Kuri S E. Intergranular corrosion susceptibility in supermartensitic stainless steel weldments[J]. Corros Sci,2009,51(10):2316.
13 Kong D J, Wu Y Z, Long D. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J Iron Steel Res Int,2013,20(1):40.
14 Xie F, Sun Y, Wang D, et al. SCC behavior of X80 steel welded joint in mechanical and electrochemical effects[J]. Trans China Welding Institution,2015,36(2):47(in Chinese).
谢飞, 孙岩, 王丹, 等. 力学与电化学作用下X80钢焊接接头SCC行为分析[J]. 焊接学报,2015,36(2):47.
15 Lu B T, Luo J L, Ivey D G. Near-neutral pH stress corrosion crac-king susceptibility of plastically prestrained X70 steel weldment[J]. Metall Mater Trans A,2010,41(10):2538.
16 Zhang T M, Wang Y, Zhao W, et al. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metall Sin,2015,51(9):1101(in Chinese).
张体明, 王勇, 赵卫, 等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报,2015,51(9):1101.
17 Capelle J, Dmytrakh I, Azari Z, et al. Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52[J]. Int J Hydrogen Energy,2013,38(33):14356.
18 Tang J Q, Gong J M. Analysis on properties of corrosion and hydrogen-permeation for weldment of SPV50Q steel[J]. Trans China Welding Institution,2012,33(1):57(in Chinese).
唐建群, 巩建鸣. SPV50Q钢焊接接头腐蚀和氢渗透性能分析[J]. 焊接学报,2012,33(1):57.
19 Wang Z X, Zhang Y, Zhang J X. Corrosion fatigue performance of 2205 DSS welded joints[J]. Trans China Welding Institution,2014,35(5):67(in Chinese).
王智祥, 张瑶, 张继祥. 2205DSS 焊接接头腐蚀疲劳性能分析[J]. 焊接学报,2014,35(5):67.
20 Mutombo K, Du Toit M. Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy[J]. Int J Fatigue,2011,33(12):1539.
21 Akita M, Nakajima M, Tokaji K, et al. Corrosion fatigue behaviour of ferritic stainless steel welded joints in 3%NaCl aqueous solution[J]. Nihon Kikai Gakkai Ronbunshu A Hen/Trans Jpn Soc Mech Eng Part A,2006,72(713):120.
22 Wahab W A, Sakano M. Experimental study of corrosion fatigue behaviour of welded steel structures[J]. J Mater Processing Technol,2001,118(1):117.
23 Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment[J]. J Chinese Soc Corros Protection,2014,34(4):321(in Chinese).
刘智勇, 万红霞, 李禅, 等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报,2014, 34(4):321.
24 Ballesteros A F, Ponciano Gomes J A, Bott I S. Corrosion evaluation of SAW welded API 5L X-80 joints in H2S-containing solution[J]. Mater Res,2015,18(2):417.
25 Xing Y Y, Liu Z Y, Du C W, et al. Influence of H2S concentration and pH value on corrosion behavior of weld joint of X65 subsea pipeline steel[J]. J Chinese Soc Corros Protection,2014,34(3):231(in Chinese).
邢云颖, 刘智勇, 杜翠薇, 等. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报,2014, 34(3):231.
26 Eliyan F F, et al. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃—An electrochemical evaluation[J]. Corros Sci,2013,74(74):297.
27 Pagotto J F, et al. Visualisation of the galvanic effects at welds on carbon steel[J]. J Brazilian Chem Soc,2015,26(4):667.
28 Song Z Z. Weld corrosion on underwater weldment studied by electrochemical methods[D]. Qingdao: Ocean University of China, 2013(in Chinese).
宋真真. 水下焊接件焊缝腐蚀的电化学研究[D]. 青岛: 中国海洋大学,2013.
29 Hu L H, Zhang L, Xu L N, et al. CO2 corrosion behavior of 3Cr low-alloy pipeline steel and weld joints [J]. J University of Science and Technology Beijing,2010,32(3):345(in Chinese).
胡丽华, 张雷, 许立宁, 等. 3Cr低合金管线钢及焊接接头的CO2腐蚀行为[J]. 北京科技大学学报,2010,32(3):345.
30 Wu M, Chen X, He C. Effect of CO2 partial pressure on SCC beha-vior of welded X80 pipeline in simulated soil solution[J]. Acta Me-tall Sinica (English Letters),2011,24(1):65.
31 Bordbar S, Alizadeh M, Hashemi S H. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel[J]. Mater Des,2013,45(1):597.
32 Mohammadi F, Eliyan F F, et al. Corrosion of simulated weld HAZ of API X-80 pipeline steel[J]. Corros Sci,2012, 63(12):323.
33 Lima-Neto P, Farias J P, et al. Determination of the sensitized zone extension in welded AISI 304 stainless steel using nondestructive electrochemical techniques[J]. Corros Sci,2008,50(4):1149.
34 Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J]. Corros Sci,2011,53(2):850.
35 Deshpande K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochim Acta,2011,56(4):1737.
36 Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros Sci,2009,51(8):1714.
37 Wang L W, Du C W, Liu Z Y, et al. SVET characterization of localized corrosion of welded X70 pipeline steel in acidic solution[J]. Corros Protection,2012,33(11):935(in Chinese).
王力伟, 杜翠薇, 刘智勇, 等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护,2012,33(11):935.
38 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corros Sci,2014,85(1):401.
39 Yang R, Li Y. The application of wire beam electrode technology in localized corrosion research[J]. Corros Sci Protection Technol,2014,26(3):259(in Chinese).
杨瑞, 李焰. 丝束电极技术在局部腐蚀研究中的应用[J]. 腐蚀科学与防护技术,2014,26(3):259.
40 Fushimi K, Naganuma A, Azumi K. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution[J]. Corros Sci,2008,50(3):903.
41 Zhang X, Wang W, Wang J. A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corros Sci,2009,51(6):1475.
42 李焰, 杨瑞. 精确模拟焊接接头的模块化阵列电极及其制备方法: 中国, 2013103395198[P].2015-07-08.
43 李焰, 刘玉, 张大磊. 基于微电极阵列的多通道电偶腐蚀测试系统: 中国, 2012206227265[P].2015-01-21.
44 Li D, Chen H N, Xu H. Effect of surface nanocrystatllization on stress corrosion cracking of SS400 welded joint[J]. Trans China Welding Institution,2009,30(3):65(in Chinese).
李东, 陈怀宁, 徐宏. 表面纳米化对SS400钢焊接接头应力腐蚀性能的影响[J]. 焊接学报,2009,30(3):65.
45 Yang Y H, Yan B, Li J. The effect of large heat input on the microstructure and corrosion behavior of simulated heat affected zone in 2205 duplex stainless steel[J]. Corros Sci,2011,53(11):3756.
46 Siddique M, Abid M. Numerical simulation of mechanical stress relieving in a multi-pass GTA girth welded pipe-flange joint to reduce IGSCC[J]. Modelling Simulation Mater Sci Eng,2005,13(8):1383.
47 Armentani E, Pozzi A, Sepe R. Finite-element simulation of tempe-rature fields and residual stresses in butt welded joints and comparison with experimental measurements[C]//ASME 12th Biennial Conference on Engineering Systems Design and Analysis ESDA2014. Copenhagen,2014:V001T04A005.
48 Wei Y, Xu Y, Dong Z, et al. Three-dimensional Monte Carlo simulation of discontinuous grain growth in HAZ of stainless steel during GTAW process[J]. J Mater Processing Technol,2009,209(3):1466.
49 Lu Y, Jing H, Han Y, et al. Numerical modeling of weld joint corrosion[J]. J Mater Eng Performance,2016,25(3):960.
50 Yu Z G, Jiang Y, Gong J M, et al. Numerical simulation analysis of welding residual stress on dissimilar metal welded pipes[J]. Trans China Welding Institution,2009,30(8):69(in Chinese).
余正刚, 姜勇, 巩建鸣, 等. 不同异种钢管道焊接接头残余应力的数值模拟[J]. 焊接学报,2009,30(8):69.
51 Jin X J, Huo L X, Zhang Y F, et al. Study on H2S stress corrosion of welded joint for X65 pipeline steel and finite element numerical analysis[J]. J Chinese Soc Corros Protection,2004,24(1):20(in Chinese).
金晓军, 霍立兴, 张玉凤, 等. X65管线钢焊接接头H2S应力腐蚀研究及其有限元数值分析[J]. 中国腐蚀与防护学报,2004, 24(1):20.
52 Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Comput Mater Sci,2006,37(3):269.
53 Kikuchi M, Wada Y, et al. Stress corrosion cracking analysis under thermal residual stress field using S-FEM[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Inc,2011:431.
54 Feng L J, Guo Q Q, Lei A L. Corrosion resisting property of the carbon steel welded joint in ammonium sulfite solution[J]. China Pulp Paper,2006,25(3):26(in Chinese).
冯拉俊, 郭巧琴, 雷阿利. 碳钢焊接接头在亚硫酸铵溶液中的耐蚀性研究[J]. 中国造纸,2006,25(3):26.
55 Lee D B. Corrosion of low carbon steel weldments at 600—800℃ in N2/H2S/H2O gases[J]. Metals Mater Int,2014,20(2):261.
56 Sun Q L, Cao B, Wu Y S. Electrochemical behavior of various micro-areas on the welded joint of Q235 steel[J]. J University of Scie-nce and Technology Beijing,2009,31(1):41(in Chinese).
孙齐磊, 曹备, 吴荫顺. Q235管线钢焊接接头微区电化学行为[J]. 北京科技大学学报,2009,31(1):41.
57 Pereda M D, Gervasi C A, Llorente C L, et al. Microelectrochemical corrosion study of super martensitic welds in chloride-containing media[J]. Corros Sci,2011,53(12):3934.
58 Wang S G, Ma Q H, Li Y. Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR[J]. Mater Des,2011,32(2):831.
59 Peng Q J, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water[J]. Corros Sci,2011,53(12):4309.
60 Labanowski J. Mechanical properties and corrosion resistance of dissimilar stainless steel welds[J]. Archives Mater Sci Eng, 2007,28(1):27.
61 Ge M Z, Xiang J Y, Zhang Y K. Research on the properties of stress corrosion cracking for tungsten inert-gas arc welded AZ31B magne-sium alloy[J]. Mater Rev:Res,2013,27(2):40(in Chinese).
葛茂忠, 项建云, 张永康. AZ31B镁合金TIG焊接件应力腐蚀性能研究[J]. 材料导报:研究篇,2013,27(2):40.
62 Venugopal A, Sreekumar K, Raja V S. Stress corrosion cracking behavior of multipass TIG-welded AA2219 aluminum alloy in 3.5 wt pct NaCl solution[J]. Metall Mater Trans A,2012,43(9):3135.
63 Hatamleh O, Singh P M, Garmestani H. Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints[J]. Corros Sci,2009,51(1):135.
64 Xiao M. Stress corrosion experiment research for the effect of wel-ding heat input on Q345R steel welded joints in wet hydrogen sulfide solution[D]. Hangzhou: Zhejiang University of Technology,2013(in Chinese).
肖蒙. 焊接热输入对Q345R钢焊接接头在湿硫化氢环境中应力腐蚀敏感性影响的试验研究[D]. 杭州: 浙江工业大学,2013.
65 Ruan X, Zhang L F, Kong Q Y, et al. Intergranular corrosion of weldments of stainless steel pipe-pipe parts for chemical engineering and its prevention[J]. Corros Sci Protection Technol,2007,27(1):77(in Chinese).
阮鑫, 张利锋, 孔庆月, 等. 化工用不锈钢管件-管子焊接中的晶间腐蚀与防范措施[J]. 腐蚀科学与防护技术,2007,27(1):77.
66 Jin X J, Huo L X, Zhang Y F, et al. Effects of heat input on mechanical and corrosion properties of duplex stainless steel tubular welded joint[J]. Trans China Welding Institution,2004,25(3):109(in Chinese).
金晓军, 霍立兴, 张玉凤, 等. 热输入对双相不锈钢管接头力学和腐蚀性能的影响[J]. 焊接学报,2004,25(3):109.
67 Moon K M, Lee M H, et al. The effect of postweld heat treatment affecting corrosion resistance and hydrogen embrittlement of HAZ part in FCAW[J]. Surf Coat Technol,2003,169-170(22):675.
68 Wu Y E, Wang Y T. Enhanced SCC resistance of AA7005 welds with appropriate filler metal and post-welding heat treatment[J]. Theoretical Appl Fracture Mech,2010,54(1):19.
69 Paglia C S, Buchheit R G. The time-temperature-corrosion susceptibility in a 7050-T7451 friction stir weld[J]. Mater Sci Eng A, 2008,492(1):250.
70 Karimzadeh F, Heidarbeigy M, Saatchi A. Effect of heat treatment on corrosion behavior of Ti-6Al-4V alloy weldments[J]. J Mater Processing Technol,2008,206(1):388.
71 Clover D, Kinsellal B, Pejcic B, et al. The influence of microstructure on the corrosion rate of various carbon steels[J]. J Appl Electrochem,2005,35(2):139.
72 Bulger J T, Lu B T, Luo J L. Microstructural effect on near-neutral pH stress corrosion cracking resistance of pipeline steels[J]. J Mater Sci,2006,41(15):5001.
73 Huang A G, Li Z Y, Yu S F, et al. Corrosion behavior of weld me-tal of low-alloy steel[J]. Trans China Welding Institution,2005, 26(11):30(in Chinese).
黄安国, 李志远, 余圣甫, 等. 低合金钢焊缝金属的腐蚀行为[J]. 焊接学报,2005,26(11):30.
74 Xian N, Liu D X, Reng C Q, et al. Improvement of SCC behavior of pipeline steel X80 welded joint by shot peening[J]. Corros Sci Protection Technol,2008,20(6):466(in Chinese).
鲜宁, 刘道新, 任呈强, 等. 喷丸强化改善管线钢X80焊接接头SCC行为研究[J]. 腐蚀科学与防护技术,2008,20(6):466.
75 Lu Z, Shi L, Zhu S, et al. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel[J]. Mater Sci Eng A,2015,637:170.
76 Hatamleh O, Dewald A. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints[J]. J Mater Processing Technol,2009,209(10):4822.
77 Bai T, Guan K. Evaluation of stress corrosion cracking susceptibility of nanocrystallized stainless steel 304L welded joint by small punch test[J]. Mater Des,2013,561(24):498.
78 Wang B Y, Miao Y, Zhou S N, et al. Effect of surface nanocrystallization on stress corrosion cracking behaviors of X80 pipeline steel[J]. Trans China Welding Institution,2013,34(8):81(in Chinese).
王炳英, 苗燕, 周胜男, 等. 表面纳米化对X80管线钢应力腐蚀开裂行为的影响[J]. 焊接学报,2013,34(8):81.
79 Pei J F, Liu J N, He W Y. Effect of laser shock processing on sulfide stress corrosion cracking of X70 pipeline steel welded joint[J]. Appl Mech Mater,2010,44-47:451.
80 Zhang L, Zhang Y K, et al. Effects of laser shock proce-ssing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corros Sci,2013,66(1):5.
81 Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corros Sci,2012,60(3):145.
82 Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment[J]. Mater Lett,2015, 139:462.
83 Yin D Q, Wang D P. Research on stress corrosion behavior of AISI304 stainless steel enhanced by ultrasonic peening treatment[C]//Materials Science Forum. Switzerland: Trans Tech Publications Inc.,2012:404.
84 Abdullah A, et al. Strength enhancement of the welded structures by ultrasonic peening[J]. Mater Des,2012, 38(38):7.
[1] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[2] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[3] 刘梁, 徐云泽, 王晓娜, 贺丽敏, 黄一. 碳钢焊缝在混凝土孔隙液中的优先腐蚀行为与亚硝酸盐缓蚀剂作用效果*[J]. 《材料导报》期刊社, 2017, 31(18): 119-124.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed