Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 119-124    https://doi.org/10.11896/j.issn.1005-023X.2017.018.024
  材料研究 |
碳钢焊缝在混凝土孔隙液中的优先腐蚀行为与亚硝酸盐缓蚀剂作用效果*
刘梁1, 徐云泽1, 王晓娜2, 贺丽敏1, 黄一1
1 大连理工大学船舶工程学院,大连 116024;
2 大连理工大学物理与光电学院,大连 116024
Preferential Corrosion Behavior of Carbon Steel Weld in Simulation Pore Solution and the Inhibition Performance of Nitrite
LIU Liang1, XU Yunze1, WANG Xiaona2, HE Limin1, HUANG Yi1
1 School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024;
2 School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 2340KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过8通道耦合阵列多电极系统以及腐蚀试片的浸泡实验研究了碳钢焊缝在模拟混凝土孔隙液中的腐蚀行为以及亚硝酸盐缓蚀剂的作用效果。通过测量开路电位、耦合电位以及电偶电流观测焊缝区域 (Weld metal)、热影响区域 (Heat affected zone)与母材区域 (Base metal) 之间的电偶腐蚀以及亚硝酸盐缓蚀剂对焊缝部位的作用效果。耦合阵列多电极系统以及腐蚀试片的浸泡实验结果共同表明,在含有Cl-的模拟混凝土孔隙液中,Q235的WM及其附近区域会发生优先腐蚀。同时,亚硝酸盐缓蚀剂能够明显减小不同区域之间的电偶电流,从而减小焊缝处的局部腐蚀风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘梁
徐云泽
王晓娜
贺丽敏
黄一
关键词:  焊缝腐蚀  耦合阵列多电极  亚硝酸盐  局部腐蚀    
Abstract: Through the development of an eight-channel multi-electrode array sensor system and the immersion test, the corrosion process of carbon steel weld and the inhibition performance of nitrite on weld were studied in simulation pore solution. The galvanic corrosion among weld metal, heat affected zone and base metal and the inhibition performance of nitrite were studied by measuring the individual open circuit potential, coupled potential and galvanic current. The measurement results of multi-electrode array sensor system and immersion test showed the weld metal and the nearby area of weld metal would corrode preferentially. The inhibitor NaNO2 performed well inhibition effect for the welding corrosion by reducing the galvanic current apparently.
Key words:  corrosion of weldments    multi-electrode array sensor    nitrite    localized corrosion
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG172.2  
基金资助: 十三五国家科技支撑计划项目(2016ZX05057006);中央高校基本科研业务费专项资金(DUT15YQ36;DUT15TD36)
通讯作者:  王晓娜:通讯作者,女,1976年生,博士,高级工程师,主要研究方向为传感器及其在油气田中的应用 E-mail:wangxn@dlut.edu.cn   
作者简介:  刘梁:男,1993年生,硕士研究生,研究方向为海底管道腐蚀监测技术及腐蚀机理 E-mail:liuliang93@126.com
引用本文:    
刘梁, 徐云泽, 王晓娜, 贺丽敏, 黄一. 碳钢焊缝在混凝土孔隙液中的优先腐蚀行为与亚硝酸盐缓蚀剂作用效果*[J]. 《材料导报》期刊社, 2017, 31(18): 119-124.
LIU Liang, XU Yunze, WANG Xiaona, HE Limin, HUANG Yi. Preferential Corrosion Behavior of Carbon Steel Weld in Simulation Pore Solution and the Inhibition Performance of Nitrite. Materials Reports, 2017, 31(18): 119-124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.024  或          http://www.mater-rep.com/CN/Y2017/V31/I18/119
1 Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion[J]. Electrochim Acta, 2002,47(24):3949.
2 Nimmo W, Griffiths A J, Orkney L, et al. Evaluation of techniques for measuring corrosion activity of carbon steel welds[J]. British Corros J, 2002,37(3):182.
3 Cui Y, Lundin C D. Evaluation of initial corrosion location in E316L austenitic stainless steel weld metals[J]. Mater Lett, 2005,59(12):1542.
4 Alawadhi K, Robinson M J. Preferential weld corrosion of X65 pipeline steel in flowing brines containing carbon dioxide[J]. Corros Eng Sci Technol, 2011,46(4):318.
5 Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones[J]. Corros Sci, 2011,53(12):4026.
6 Alawadhi K, Aloraier A S, Joshi S, et al. Investigation on preferential corrosion of welded carbon steel under flowing conditions by EIS[J]. J Mater Eng Perform, 2013,22(8):2403.
7 Alawadhi K, Martinez M, Aloraier A. Effect of inhibitors on prefe-rential weld corrosion under sweet conditions[J]. Corros Eng Sci Technol, 2014,3(61):172.
8 Bautista A, Paredes E C, Alvarez S M, et al. Welded, sandblasted, stainless steel corrugated bars in non-carbonated and carbonated mortars: A 9-year corrosion study[J]. Corros Sci, 2016,102:363.
9 Ayyub B M, Naji AI-Mutair, Peter Chang. Structural strength of bridge decks reinforced with weld wire fabric[J]. J Struct Eng, 1996,122(9):989.
10Gilbert R I, Sakka Z I. Strength and ductility of reinforced concrete slabs containing welded wire fabric and subjected to support settlement[J]. Eng Struct, 2010,32(6):1509.
11Medeiros-Junior R A d, Lima M G d, Brito P C d, et al. Chloride penetration into concrete in an offshore platform-analysis of exposure conditions[J]. Ocean Eng, 2015,103:78.
12Song Y, Song L, Zhao G. Factors affecting corrosion and approaches for improving durability of ocean reinforced concrete structures[J]. Ocean Eng, 2004,31(5-6):779.
13Poursaee A. Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution[J]. Concr Res Lett, 2010,1(3):90.
14Huang Y, Yang L J, Xu Y Z, et al. A novel system for corrosion protection of reinforced steels in the underwater zone[J]. Corros Eng Sci Technol, 2016,51(8):566.
15Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Electrochim Acta, 2011,56(17):5890.
16Sideris K K, Savva A E. Durability of mixtures containing calcium nitrite based corrosion inhibitor[J]. Cem Concr Compos, 2005,27(2):277.
17Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes[J]. Acta Phys Chim Sin, 2011,27(1):127.
董泽华,石维,郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为[J]. 物理化学学报, 2011,27(1):127.
18Dong Z H, Shi W, Guo X P. Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros Sci, 2011,53(4):1322.
19Legat A, Leban M, Bajt Ž. Corrosion processes of steel in concrete characterized by means of electrochemical noise[J]. Electrochim Acta, 2004,49(17-18):2741.
20Tan Y J, Bailey S, Kinsella B. The monitoring of the formation and destruction of corrosion inhibitor films using electrochemical noise ansys (ENA)[J]. Corros Sci, 1996,38(10):1681.
21Xu Y Z, Yang L J, He L M, et al. The monitoring of galvanic corrosion behavior caused by mineral deposit in pipeline working conditions using ring form electronic resistance sensor system[J]. Corros Eng Sci Technol, 2016,51(8):606.
22Yang L, Cragnolino G, Sridhar N. Comparison of localized corrosion of Fe-Ni-Cr-Mo alloys in chloride solutions using a coupled multielectrode array sensor[C]//Proceeding Conference Corrosion. Houston, NACE Intemational, 2002.23Yang L, Sun X. Measurement of cumulative localized corrosion rate using coupled multi-electrode array sensors [C]//Proceeding Confe-rence Corrosion 2007. Houston, NACE International, 2007.
24Sun X, Yang L. Real-time monitoring of localized and general corrosion rates in drinking water systems utilizing coupled multi-electrode sensors[C]//Proceeding Conference Corrosion 2007. Houston, NACE International, 2006.
25Yang L, Chiang K, Yu H, et al. Threshold chloride levels for loca-lized carbon steel corrosion in simulated concrete pore solution using coupled multi-electrode array sensors[J]. Corrosion, 2012,70(8):142.
26Fushimi K, Naganuma A, Azumi K, et al. Current distribution du-ring galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution[J]. Corros Sci, 2008,50(3):903.
27Legat A. Monitoring of steel corrosion in concrete by electrode arrays and electrical resistance probes[J]. Electrochim Acta, 2007,52(27):7590.
28Shi W, Dong Z H, Kong D J, et al. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion[J]. Cem Concr Res, 2013,48:25.
[1] 李亚东, 唐晓, 李焰. 焊接接头局部腐蚀的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 158-165.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed