Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 19-24    https://doi.org/10.11896/j.issn.1005-023X.2017.010.005
  材料研究 |
酞菁钴/MCM-41的制备及其可见光催化性能*
王德军1,2,郭锐1,2,孙浩程3,刘芳1,2,赵朝成1,2,王永强1,2
1 中国石油大学华东化学工程学院, 青岛 266580;
2 石油石化污染物控制与处理国家重点实验室, 北京 102206;
3 中国石油化工股份有限公司抚顺石油化工研究院, 抚顺 113001
Synthesis of Cobalt Phthalocyanine/MCM-41 and Its Photocatalytic Performance Under Visible Light Irradiation
WANG Dejun1,2, GUO Rui1,2, SUN Haocheng3, LIU Fang1,2,ZHAO Chaocheng1,2, WANG Yongqiang1,2
1 College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580;2 State Key Laboratory of Petroleum Pollution Control, Beijing 102206;3 Sinopec Fushun Research Institute of Petroleum and Petrochemicals, Fushun 113001 Company Limited, Fuquan 550501
下载:  全 文 ( PDF ) ( 1244KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以MCM-41分子筛为载体,采用浸渍法将酞菁钴负载到分子筛上以氙灯为光源降解甲基橙溶液。对负载型酞菁钴催化剂进行FT-IR、XRD、SEM表征,结果表明所制催化剂负载效果良好,且分子筛结构未发生改变。以甲基橙溶液为模拟处理对象,研究催化剂的催化性能,考察了光照、酞菁钴负载、催化剂用量等因素对催化效果的影响。结果表明,氧气充足时,在光照条件下、0.04 g负载型酞菁钴催化剂处理200 mL 的0.05 g/L甲基橙溶液能够有很好的处理效果,2 h降解率能够达到98.3%,且重复利用4次后降解率仍能达到90%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王德军
郭锐
孙浩程
刘芳
赵朝成
王永强
关键词:  酞菁钴  负载  降解  甲基橙  光催化    
Abstract: The photocatalytic performance of cobalt phthalocyanine (CoPc) immobilized onto MCM-41 was investigated for decomposition of methyl orange in aqueous solutions. The morphology and structure of the catalyst were analyzed by ultraviolet-visible spectroscopy(UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscopy (SEM). Photocatalytic efficiency of the prepared catalyst for degradation of methyl orange was tested under visible light irradiation. The photodegradation process was completed within 2 h using a dose of 0.04 g catalyst in the 0.05 g/L methyl orange solution under xenon lamp, and the removal rate reached 98.3%, even after four times' reuse, that number was 90%. The obtained results revealed that the photocatalyst was very active in degradation of methyl orange.
Key words:  cobalt phthalocyanine    immobilization    degradation    methyl orange    photocatalysis
                    发布日期:  2018-05-08
ZTFLH:  X131.2  
基金资助: *国家科技重大专项(2016ZX05040003)
通讯作者:  赵朝成,男,1963年生,硕士,教授,博士研究生导师,研究方向为石化企业三废治理及资源化E-mail:zhaochch@upc.edu.cn   
作者简介:  王德军:男,1985年生,博士研究生,研究方向为水污染治理E-mail:wdjhello@163.com
引用本文:    
王德军,郭锐,孙浩程,刘芳,赵朝成,王永强,. 酞菁钴/MCM-41的制备及其可见光催化性能*[J]. 材料导报编辑部, 2017, 31(10): 19-24.
WANG Dejun,GUO Rui,SUN Haocheng, LIU Fang,ZHAO Chaocheng, WANG Yongqiang. Synthesis of Cobalt Phthalocyanine/MCM-41 and Its Photocatalytic Performance Under Visible Light Irradiation. Materials Reports, 2017, 31(10): 19-24.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.005  或          http://www.mater-rep.com/CN/Y2017/V31/I10/19
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37.
2 Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull Environ Contam Toxicol,1976,16(6):697.
3 Mor G K, Varghese O K, et al. P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation[J]. Nano Lett,2008,8(7):1906.
4 边永忠,李琳. 一种二氧化钛金属酞菁复合纳米粉体及其制备工艺: CN, 103990498 A[P].2014.
5 Karunakaran C, Kalaivani S, Vinayagamoorthy P, et al. Electrical, optical and visible light-photocatalytic properties of monoclinic BiVO4 nanoparticles synthesized hydrothermally at different pH[J]. Mater Sci Semicond Process,2014,21(1):122.
6 Wang X, Zhan S, Wang Y, et al. Facile synthesis and enhanced vi-sible-light photocatalytic activity of Ag-S nanocrystal-sensitized Ag8W4O16 nanorods[J]. J Colloid Interface Sci,2014,422:30.
7 Reuterg?dh L B, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis[J]. Chemosphere,1997,35(3):585.
8 Mahmood M A, Baruah S, Dutta J. Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nano-particles[J]. Mater Chem Phys,2011,130(1-2):531.
9 Tepl??F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots[J]. Collection Czechoslovak Chem Commun,2011,76(7):859.
10 Ravelli D, Dondi D, et al. Photocatalysis. A multi-faceted concept for green chemistry[J]. Chem Soc Rev,2009,38(7):1999.
11 Marin M L, Santos-Juanes L, Arques A, et al. Organic photocatalysts for the oxidation of pollutants and model compounds[J]. Chem Rev,2012,112(3):1710.
12 Li Z Q, et al. Recent progress in phthalocyanine optoelectronic materials[J]. Chin J Org Chem,2013,33(5):891(in Chinese).
李战强, 等. 酞菁类光电材料研究新进展[J]. 有机化学,2013,33(5):891.
13 Qi K, Selvaraj R, Fahdi T A, et al. Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study[J]. Appl Surf Sci,2016,387:750.
14 Park Y, Singh N J, Kim K S, et al. Fullerol-titania charge-transfer-mediated photocatalysis working under visible light[J]. Chem Eur J,2009,15(41):10843.
15 Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Phys Chem Chem Phys,2010,13(8):3491.
16 Liu J B, Zhao Y, Zhang F S, et al. Dimerization of metal-free sulfonated phthalocyanines in aqueous methanol solution[J]. Acta Phys-Chim Sin,1996,12(2):163(in Chinese).
刘剑波, 赵瑜, 张富实,等. 磺化酞菁在甲醇-水溶液中的二聚作用研究[J]. 物理化学学报,1996,12(2):163.
17 Guo L P, Jiang X E,Du X G,et al. Spectroscopy and electrochemistry studies on the aggregation of binuclear cobalt phthalocyaninehexasulfonate in mixed solutions[J]. Spectrosc Spectral Anal,2003,23(5):1031(in Chinese).
郭黎平, 姜秀娥, 杜锡光,等. 双核磺化酞菁钴在混合溶液中聚集现象的光谱和电化学研究[J]. 光谱学与光谱分析,2003,23(5):1031.
18 Wu X, Yuan S H, Zheng G, et al. Study on the action force of di-merization of cobalt tetrasulfonate Ph-thalocyanine in aqueous solotion[J]. Spectrosc Spectral Anal,1999,19(1):112(in Chinese).
吴星, 袁诗海, 郑刚,等. 四磺化酞菁钴在水溶液中二聚作用力的研究[J]. 光谱学与光谱分析,1999,19(1):112.
19 Iliev V, Alexiev V, et al. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds[J]. J Mol Catal A:Chem,1999,137:15.
20 Zugle R, Nyokong T. Zinc(Ⅱ) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine anchored on an electrospun polysulfone polymer fiber: Application for photosensitized conversion of methyl orange[J]. J Mol Catal A:Chem,2013,366(1):247.
21 Xiong Z, Xu Y, Zhu L, et al. Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite[J]. Langmuir,2005,21(23):10602.
22 Sun A, Xiong Z, Xu Y. Adsorption and photosensitized oxidation of sulfide ions on aluminum tetrasulfophthalocyanine-loaded anionic re-sin[J]. J Mol Catal A:Chem,2006,259(1-2):1.
23 Cojocaru B, Parvulescu V I, Preda E, et al. Sensitizers on inorganic carriers for decomposition of the chemical warfare agent yperite[J]. Environ Sci Technol,2008,42(13):4908.
24 Sanjuán A, et al. 2, 4, 6-Triphenylpyrylium ion encapsulated in Y zeolite as photocatalyst. A co-operative contribution of the zeolite host to the photodegradation of 4-chlorophenoxyacetic acid using solar light[J]. Appl Catal B:Environ,1998,15(3-4):247.
25 Zanjanchi M A, Ebrahimian A, Arvand M. Sulphonated cobalt phthalocyanine-MCM-41: An active photocatalyst for degradation of 2,4-dichlorophenol[J]. J Hazard Mater,2010,175(1-3):992.
26 Corma A, et al. Highly efficient photoinduced electron transfer with 2,4,6-triphenylpyrylium cation incorporated inside extra large pore zeotype MCM-41[J]. J Am Chem Soc,1994,116(21):9767.
27 Barrett P A, Dent C E, Linstead R P. 382. Phthalocyanines. Part Ⅶ. Phthalocyanine as a co-ordinating group. A general investigation of the metallic derivatives[J]. J Am Chem Soc,1936:1719.
28 Xu Y M, Hu M Q, Chen Z X, et al. Mineralization of 4-chlorophenol under visible light irradiation in the presence of aluminum and zinc phthalocyaninesulfonates[J]. Chin J Chem,2003,21(8):1092.
29 Xia H, Nogami M. Copper phthalocyanine bonding with gel and their optical properties[J]. Opt Mater,2000,15(2):93.
30 Hadasch A, Sorokin A, Rabion A, et al. Sequential addition of H2O2, pH and solvent effects as key factors in the oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine[J]. New J Chem,1998,22(1):45.
31 Chen W, Zhao B, Pan Y, et al. Preparation of a thermosensitive cobalt phthalocyanine/N-isopropylacrylamide copolymer and its catalytic activity on thiol[J]. J Colloid Interface Sci,2006,300(2):626.
32 Sidorov A N, Kotlyar I P. Infrared spectra of phthalocyanines. Ⅰ. The effect of crystalline structure and of the central metallic atom on the phthalocyanine molecule in the solid state[J]. Opt Spectrosc,1961,11:92.
33 Zhao Z H, Fan J M, Xie M M, et al. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation.[J]. J Cleaner Prod,2009,17(11):1025.
34 Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc,1992,114(27):10834.
35 Leznoff C C, Lever P A B. Phthalocyanines-Properties and applications[M]. New York:VCH,1989.
36 Wu L, Li A M, et al. Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine[J]. J Mol Catal A:Chem,2007,269(1):183.
37 Sanjuán A, Alvaro M, Aguirre G, et al. Intrazeolite photochemistry. 21. 2,4,6-triphenylpyrylium encapsulated inside zeolite Y supercages as heterogeneous photocatalyst for the generation of hydroxyl radical[J]. J Am Chem Soc,1998,120(29):7351.
38 Sanjuán A, Aguirre G, Alvaro M, et al. 2,4,6-Triphenylpyrylium ion encapsulated within Y zeolite as photocatalyst for the degradation of methyl parathion[J]. Water Res,2000,34(1):320.
39 Nash T. The colorimetric estimation of formaldehyde by means of the hantzsch reaction[J]. Biochem J,1953,55(3):416.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[7] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[8] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[9] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[10] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[11] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[12] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[15] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed