Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 418-425    https://doi.org/10.11896/cldb.201903007
  无机非金属及其复合材料 |
基于溶液法的单壁碳纳米管水平取向排列研究进展
张小品1,2, 邱松2, 张兆春1, 金赫华2, 李清文2
1 上海大学材料科学与工程学院,上海 200444
2 中国科学院苏州纳米技术与纳米仿生研究所,中国科学院纳米器件与应用重点实验室,苏州 215123
Latest Research Progress of Horizontal Alignment of Single-walled CarbonNanotubes Based on Solution Method
ZHANG Xiaopin1,2, QIU Song2, ZHANG Zhaochun1, JIN Hehua2, LI Qingwen2
1 Material Science and Engineering institute, Shanghai University, Shanghai 200444
2 Key laboratory of Nanodevices and Applications, Institute of Nano-tech and Nano bionics, Chinese Academy of Sciences, Suzhou 215123
下载:  全 文 ( PDF ) ( 2678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单壁碳纳米管(SWCNTs)以其优异的物理、化学及电学性质,在微纳米电子器件领域表现出巨大的应用前景。作为典型的一维纳米材料, SWCNTs呈现出随结构变化的不同导电属性和手性的多样性。然而,通常直接生长制备的SWCNTs是金属性和半导体性碳纳米管的混合物或不同手性结构的混合体,这在很大程度上限制了SWCNTs在电子器件领域中的实际应用。因此,首先需要精细分离出单一导电属性或单一手性的SWCNTs,以满足制作高性能碳纳米管器件的要求。此外,SWCNTs的一维特性使其在性能上显示出极其显著的各向异性,即大部分情况下其轴向性能要优于径向性能。因而,对于SWCNTs的进一步应用来说,其取向排列问题也显得尤为重要。
基于上述两个方面的因素,近年来,直接生长后经分散分离处理的SWCNTs通过外界作用力实现其取向排布的方法(即基于溶液法的后排列的方法),引起了研究者们的极大关注。基于溶液法的SWCNTs取向排列方法,需要首先通过表面活性剂或小芳香分子、大环共轭物、核酸、多肽等生物分子的物理吸附或化学修饰来实现SWCNTs的分散及分离,然后结合各种物理、化学方法实现其水平取向排列。
随着学者们研究的不断深入,迄今已报道了一些能够实现SWCNTs水平取向排列的简单易行的方法,包括剪切力诱导法、溶剂蒸发自组装法、Langmuir-Blodgett 和 Langmuir-Schaefer法、化学自组装法、真空过滤法、电磁场诱导法和模板法以及上述两种或几种方法的组合等。但是以上方法在大多数情况下依然存在比较严重的缺陷,如取向过程受分散体系的影响严重,分散及分离过程中会引入表面活性剂、聚合物分散剂等外来杂质并对后续器件制作造成不良影响,以及取向排列面积小、取向效果不理想等。因此,高性能碳纳米管器件的应用不仅需要取向碳纳米管的直径均匀、手性单一,而且需要高度取向、大面积以及取向密度均匀可控,这些仍是亟待解决的巨大的挑战。
本文从不同分散体系中SWCNTs的水平取向排列原理出发,在对当前碳纳米管水平取向方法进行了分类的基础上,阐述了各种方法的研究进展现状,比较了其优缺点,并对其今后的研究与发展方向做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小品
邱松
张兆春
金赫华
李清文
关键词:  SWCNTs  水平取向排列  溶液法    
Abstract: Single-walled carbon nanotubes (SWCNTs) have shown tremendous application foreground in the field of micro-nano electronic devices due to their excellent physical, chemical and electrical properties. As a typical one-dimensional nanomaterial, SWCNTs exhibit distrinct conductive properties and chiral diversity with structural changes. However, SWCNTs prepared via direct growth are generally the mixture of metallic and semiconducting carbon nanotubes or the mixture of diverse chiral structures, which limit their practical application in electronic devices to a large extent. Therefore, it is necessary to carefully isolate the SWCNTs with single conductive properties or single chiral to meet the requirements for the fabrication of high-performance carbon nanotube devices. Besides, the one-dimensional nature of SWCNTs makes them exhibit extremely significant anisotropy, ie in most cases their axial performance are superior than that of the radial. Thus, the orientation arrangement of SWCNTs is of importance for their further application.
For the above two reasons, the orientation arrangement of SWCNTs that were tailored to dispersion and separation after direct growth has been achieved via external forces(namely post-arrangement approach based on the solution method), which has attracted much attention in recent years. For the orientation arrangement method of SWCNTs based on the solution method, firstly, achieving the dispersion and separation of SWCNTs demands for physical adsorption or chemical modifications through surfactants or small aromatic molecules, macrocyclic conjugate polymers, nucleic acids, peptides and other biological molecules, and then combine with various physical and chemical methods to realize the horizontal-orientation arrangement.
With the continuous research and development. some relatively simple and practicable methods for horizontal-orientation arrangement of SWCNTs have been reported, including shear force induction method, solvent evaporation self-assembly method, Langmuir-Blodgett and Langmuir-Schaefer method, chemical self-assembly method, vacuum filtration method, electromagnetic induction method, template method and the combination of two or more of the above methods, etc. However, in most cases, the above methods still exist some critical deficiencies, for instance, the orientation process is seriously affected by dispersing system, foreign substances such as surfactants and polymer dispersants introduced from the process of dispersion and separation will do harm for the follow-up device production, and the orientation arrangement area is small, the orientation effect is yet not ideal, etc.. Hence, the application of high-performance carbon nanotube devices calls for uniform diameter and a single chirality of the carbon nanotubes, high orientation, large area, uniform and controllable orientation density, which still remain huge challenges to be addressed.
This article focused on the principle of the horizontal-orientation arrangement of SWCNTs in different dispersion system, expounds the status of the research progress of various methods, compares their merits and dismerits, and prospect to the future direction of research and development based on the classification of the current horizontal orientation method.
Key words:  SWCNTs    horizontal alignment    solution method
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  O644  
基金资助: 国家重点研发计划(2016YFB0401104);国家自然科学基金(21373262;21773292);中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH031)
作者简介:  张小品,2011年6月毕业于天津城建大学,获得理学学士学位。现为上海大学材料科学与工程研究院硕士研究生,在中国科学院苏州纳米技术与纳米仿生材料研究所金赫华研究员的指导下进行研究。主要从事SWCNTs有序薄膜的可控制备及应用的研究。金赫华,中国科学院苏州纳米技术与纳米仿生研究所研究员、硕士研究生导师。hhjin2008@sinano.ac.cn。
引用本文:    
张小品, 邱松, 张兆春, 金赫华, 李清文. 基于溶液法的单壁碳纳米管水平取向排列研究进展[J]. 材料导报, 2019, 33(3): 418-425.
ZHANG Xiaopin, QIU Song, ZHANG Zhaochun, JIN Hehua, LI Qingwen. Latest Research Progress of Horizontal Alignment of Single-walled CarbonNanotubes Based on Solution Method. Materials Reports, 2019, 33(3): 418-425.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903007  或          http://www.mater-rep.com/CN/Y2019/V33/I3/418
1 Lu F, Meziani M J, Cao L, et al. Langmuir,2011,27(8),4339.
2 Hersam M C. Nature Nanotechnology,2008,3(7),387.
3 Sankaran R M. Journal of Physics D: Applied Physics,2011,44(17),174005.
4 Zamora-Ledezma C, Blanc C, Maugey M, et al. Langmuir,2006,22(4),1858.
5 Lynch M D, Patrick D L. Nano Letters,2002,2(11),1197.
6 Vijayaraghavan D. Journal of Molecular Liquids,2014,199,128.
7 Jiang C, Saha A, Xiang C, et al. ACS Nano,2013,7,4503.
8 Azoz S, Exarhos A L, Marquez A, et al. Langmuir,2015,31(3),1155.
9 Park S, Pitner G, Giri G, et al. Advanced Materials,2015,27(16),2656.
10 Tune D D, Blanch A J, Shearer C J, et al. ACS Applied Materials & Interfaces,2015,7(46),25857.
11 Tune D D, Stolz B W, Pfohl M, et al. Nanoscale,2016,8(6),3232.
12 LeMieux M C, Roberts M. Science,2008,321,101.
13 LeMieux M C, Barman S N, Sok S, et al. ACS Nano,2009,3,4089.
14 Wang Y, Pillai S K R, Chan-Park M B. Small,2013,9(17),2960.
15 Shimoda H, Oh S J, Geng H Z, et al. Advanced Materials,2002,14(12),899.
16 McLean R S, Huang X, Khripin C, et al. Nano Letters,2006,6(1),55.
17 Sharma R, Lee C Y, Choi J H, et al. Nano Letters,2007,7(9),2693.
18 Engel M, Small J P, Steiner M, et al. ACS Nano,2008,2(12),2445.
19 Shastry T A, Seo J-WT, Lopez J J, et al. Small,2013,9(1),45.
20 Joo Y, Brady G J, Arnold M S, Gopalan P. Langmuir,2014,30(12),3460.
21 Brady G J, Way A J, Safron N S, et al.Science Advances,2016,2(9),e1601240.
22 Cao Y, Brady G J, Gui H, et al. ACS Nano,2016,10(7),6782.
23 Joo Y, Brady G J, Kanimozhi C, et al. ACS Applied Materials & Interfaces,2017,9(34),28859.
24 Li X L, Zhang L, Wang X R, et al. Journal of the American Chemical Society,2007,129(16),4890.
25 Cao Q, Han S J, Tulevski G S, et al. Nature Nanotechnology,2013,8(3),180.
26 Sgobba V, Giancane G, Cannoletta D, et al. ACS Applied Materials & Interfaces,2014,6(1),153.
27 Lee J,H, Shim W, Choolakadavil Khalid N, et al. ACS Applied Materials & Interfaces,2015,7(3),1560.
28 Bardecker J A, Afzali A, Tulevski G S, et al. Journal of the American Chemical Society,2008,130(23),7226.
29 Liu J, Casavant M J, Cox M, et al. Chemical Physics Letters,1999,303(1-2),125.
30 Cai L, Bahr J L, Yao Y, et al. Chemistry of Materials,2002,14(10),4235.
31 Nan X, Gu Z, Liu Z. Journal of Colloid and Interface Science,2002,245(2),311.
32 Choi K H, Bourgoin J P, Auvray S, et al. Surface Science,2000,462(1-3),195.
33 Valentin E, Auvray S, Goethals J, et al. Microelectronic Engineering,2002,6(1-2),491.
34 Hazani M, Hennrich F, Kappes M, et al. Chemical Physics Letters,2004,391(4-6),389.
35 Hannon J B, Afzali A, Klinke C, et al. Langmuir,2005,21(19),8569.
36 Wang Y, Maspoch D, Zou S, et al. Proceedings of the National Academy of Sciences of the United States of America,2006,103(7),2026.
37 Tulevski G S, Hannon J, Afzali A, et al. Journal of the American Chemical Society,2007,129(39),11964.
38 Kumar B, Falk A L, Afzali A, et al. ACS Nano,2017,11(8),7697.
39 Maune H T, Han S P, Barish R D, et al. Nature Nanotechnology,2010,5(1),61.
40 Han S P, Maune H T, Barish R D, et al. Nano letters,2012,12(3),1129.
41 Bardecker J A, Afzali A, Tulevski G S, et al. Chemistry of Materials,2012,24(11),2017.
42 Wu J, Antaris A, Gong M, et al. Advanced Materials,2014,26(35),6151.
43 Dan B, Ma A W K, Hároz E H, et al. Industrial & Engineering Chemistry Research,2012,51(30),10232.
44 King B, Panchapakesan B. Nanotechnology,2014,25(17),175201.
45 Oh J Y, Yang S J, Park J Y, et al. Nano Letters,2015,15(1),190.
46 He X, Gao W, Xie L, et al. Nature Nanotechnology,2016,11(7),633.
47 Chen X Q, Saito T, Yamada H, et al. Applied Physics Letters,2001,78(23),3714.
48 Nagahara L A, Amlani I, Lewenstein J, et al. Applied Physics Letters,2002,80(20),3826.
49 Senthil K M, Kim T H, Lee S H, et al. Chemical Physics Letters,2004,383(3-4),235.
50 Banerjee S, White B E, Huang L M, et al. Journal of Vacuum Science and Technology B,2006,24(6),3173.
51 Shekhar S, Stokes P, Khondaker S I. ACS Nano,2011,5(3),1739.
52 Park T J, Park J P, Lee S J, et al. Journal of Nanoscience and Nanotechnology,2011,11(5),4540.
53 Cao Q, Han S J, Tulevski G S. Nature Communications,2014,5,5071.
54 Ko H, Tsukruk V V. Nano Letters,2006,6(7),1443.
55 Simmons T J, Hashim D, Vajtai R, et al. Journal of the American Chemical Society,2007,129(33),10088.
56 Ye Z, Lee D, Campbell S A, et al. Microelectronic Engineering,2011,88(9),2919.
57 Chong K S L, Kiryukhin M V, Ng A M H. Thin Solid Films,2012,526,252.
58 Beyer S T, Walus K. Langmuir,2012,28(23),8753.
59 Kawai H, Hasegawa K, Oyane A, et al. Applied Physics Letters,2014,105(9),4.
60 Liu H, Takagi D, Chiashi S, Homma Y. ACS Nano,2010,4(2),933.
61 Brady G J, Joo Y, Singha Roy S, et al. Applied Physics Letters,2014,104(8),083107.
62 Li X, Zhang L, Wang X, et al. Journal of the American Chemical Society,2007,129(16),4890.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed