Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12127-12131    https://doi.org/10.11896/cldb.19050076
  金属与金属基复合材料 |
汽车前轴用42CrMoH钢表面脱碳演变规律及控制
张成成1, 马潇磊1, 张朝磊1, 李戬2, 赵海东3, 刘雅政1
1 北京科技大学材料科学与工程学院,北京 100083
2 青海大学机械工程学院,西宁 810016
3 西宁特殊钢股份有限公司,青海省特殊钢工程技术研究中心,西宁 810005
Evolution and Control of Surface Decarburization in Automobile Front Axle Steel 42CrMoH
ZHANG Chengcheng1, MA Xiaolei1, ZHANG Chaolei1, LI Jian2, ZHAO Haidong3, LIU Yazheng1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Mechanical Engineering, Qinghai University, Xining 810016, China
3 Xining Special Steel Co. Ltd, Qinghai Special Steel Engineering Technology Research Center, Xining 810005, China
下载:  全 文 ( PDF ) ( 9751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用42CrMoH钢制造的前轴表面存在0.10~0.15 mm深的完全脱碳层,严重影响了工件表面质量、硬度和疲劳性能。本工作通过等温加热实验,研究了加热温度对热轧态42CrMoH钢表面脱碳层类型和深度的影响,并综合分析了影响表面脱碳的因素。结果表明:保温时间为75 min时,42CrMoH钢在650~750 ℃和875~1 250 ℃时,无完全脱碳层;完全脱碳层出现温度为750~875 ℃,完全脱碳层中铁素体为粗大的柱状晶,42CrMoH钢的一个完全脱碳的敏感温度为775~825 ℃,800 ℃时其完全脱碳层深度达到最大;42CrMoH钢部分脱碳也存在敏感温度(1 150~1 250 ℃),1 200 ℃时,部分脱碳层深度达到最大。因此,为避免前轴表面出现完全脱碳层,42CrMoH钢热处理过程中的正火和淬火温度都应控制在875~885 ℃,且冷却过程中避免在750~875 ℃停留。此外,锻造余热淬火因省去正火和淬火加热过程,能有效地避免前轴表面出现完全脱碳层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张成成
马潇磊
张朝磊
李戬
赵海东
刘雅政
关键词:  汽车零件  表面脱碳  加热温度  锻造余热淬火    
Abstract: The front axle made of 42CrMoH steel was found to have a complete decarburization layer of 0.10—0.15 mm deep on the surface of the workpiece, which seriously affects the surface quality, hardness and fatigue performance of the front axle. In this paper, the isothermal heating experiment was carried out to study the effects of heating temperature on the depth and type of decarburization layer of 42CrMoH steel, and the factors affecting surface decarburization were analyzed. The results show that when the heating time is 75 min, 42CrMoH steel has only partial decarburization layer at 650—750 ℃ and 875—1 250 ℃; and the formation temperature of complete decarburization layer is 750—875 ℃, and the ferrite is the coarse columnar crystals in the complete decarburization layer, and there is a complete decarburization sensitive temperature range of 775—825 ℃, and the complete decarburization layer depth reaches the maximum at 800 ℃. Partial decarburization also has a sensitive temperature range of 1 150—1 250 ℃, and the depth reaches a maximum at 1 200 ℃. Therefore, the normalizing and quenching temperatures of the 42CrMoH heat treatment should be controlled at 875—885 ℃, and avoid staying at 750—875 ℃ for too long during the cooling process, in order to avoid the complete decarburization layer. In addition, due to normalizing and quenching heating processes are eliminated, residual heat of for-ging quenching can greatly avoid complete decarburization of the workpiece.
Key words:  automobile parts    surface decarburization    heating temperature    residual heat of forging quenching
                    发布日期:  2020-05-29
ZTFLH:  TG 142.41  
基金资助: 青海省科技计划项目(2018-ZJ-747)
通讯作者:  zhangchaolei@ustb.edu.cn   
作者简介:  张成成,北京科技大学材料科学与工程专业硕士研究生。在张朝磊副教授指导下主要进行材料成形理论与组织性能控制研究。
张朝磊,北京科技大学材料科学与工程学院副教授,2013年1月毕业于北京科技大学材料加工工程专业,获工学博士学位。毕业后留校工作至今,主要从事材料组织性能控制,先进钢铁材料成分组织设计、质量控制与应用技术等研究工作。在国内外期刊以第一作者发表论文30余篇,授权发明专利10余项。
引用本文:    
张成成, 马潇磊, 张朝磊, 李戬, 赵海东, 刘雅政. 汽车前轴用42CrMoH钢表面脱碳演变规律及控制[J]. 材料导报, 2020, 34(12): 12127-12131.
ZHANG Chengcheng, MA Xiaolei, ZHANG Chaolei, LI Jian, ZHAO Haidong, LIU Yazheng. Evolution and Control of Surface Decarburization in Automobile Front Axle Steel 42CrMoH. Materials Reports, 2020, 34(12): 12127-12131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050076  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12127
1 Chen X Y. Heat Treatment of Metals,2013,38(1),131(in Chinese).
陈希原.金属热处理,2013,38(1),131.
2 Li T, Li R X, Niu W. Physics Examination and Testing,2018,36(3),1(in Chinese).
李涛,李润霞,牛伟.物理测试,2018,36(3),1.
3 Akiniwa Y, Stanzl-tschegg S, Mayer H, et al. International Journal of Fatigue,2008,30(12),2057.
4 Prawoto Y, Ikeda M, Manville S K, et al. Engineering Failure Analysis,2008,15(8),155.
5 Tekeli. Materials Letters,2002,57(3),604.
6 Wen F J, Dong L H, Wang H D, et al. Materials Reports,2018,32(S1),517(in Chinese).
温飞娟,董丽虹,王海斗,等.材料导报,2018,32(专辑32),517.
7 Zhang C L, Xie L Y, Liu G L, et al. Metals and Materials International,2016,22(5),836.
8 Zhang C L, Zhao F, Wen X L, et al. Transactions of Materials and Heat Treatment,2015,36(9),167(in Chinese).
张朝磊,赵帆,文新理,等.材料热处理学报,2015,36(9),167.
9 Dai C K, Zhao G, Xu Y W, et al. Iron Steel,2016,51(7),60(in Chinese).
戴成珂,赵刚,徐耀文,等.钢铁,2016,51(7),60.
10 Zhang C L, Zhou L Y, Liu Y Z. International Journal of Minerals, Metallurgy and Materials,2013,20(8),720.
11 Long S P, Zhou X D. Hot Working Technology,2012,41(22),83(in Chinese).
龙松朋,周旭东.热加工工艺,2012,41(22),83.
12 Shi X B, Zhao L Y, Wang W, et al. Transactions of Materials and Heat Treatment,2013,34(7),47(in Chinese).
史显波,赵连玉,王威,等.材料热处理学报,2013,34(7),47.
13 Tian J, Xue S, Cheng G G, et al. Heat Treatment of Metals,2013,38(5),60(in Chinese).
田俊,薛顺,成国光,等.金属热处理,2013,38(5),60.
14 Zhang C L, Liu Y Z, Zhou L Y, et al. International Journal of Minerals, Metallurgy, and Materials,2012,19(2),116.
15 Zhao F, Zhang C L, Liu Y Z. Archives of Metallurgy and Materials,2016,61(3),1369.
16 Zhuang H Z, Chen J H. Engineering and Technology Research,2013(3),16(in Chinese).
庄汉洲,陈景浒.工程技术研究,2013(3),16.
17 Chen X Y. Machinist Metal Forming,2013(S1),92(in Chinese).
陈希原.金属加工,2013(S1),92.
[1] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed