Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3130-3134    https://doi.org/10.11896/cldb.18070014
  高分子与聚合物基复合材料 |
纬编针织物电磁屏蔽效能CST仿真分析
孙天1, 张一曲1, 赵晓明1, 2, 3, , 齐业雄1
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学天津市先进纤维与储能技术重点实验室,天津 300387
3 天津工业大学天津市先进纺织复合材料重点实验室,天津 300387
CST Simulation Analysis of Electromagnetic Shielding Effectiveness of Weft-knitted Fabric
SUN Tian1, ZHANG Yiqu1, ZHAO Xiaoming1,2,3, QI Yexiong1
1 College of Textile Science and Engineering of Tianjin Polytechnic University, Tianjin 300387
2 Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tianjin Polytechnic University, Tianjin 300387
3 Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 3360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究电磁波在针织物中的传播规律,用SolidWorks软件对纬编针织结构进行微观建模,利用CST微波工作室建立仿真模型。采用有限积分法计算了0~18 GHz波段针织物的电导率、织物组织结构、电磁波入射角、轴向衬纱层数及方向对屏蔽效能的影响。结果表明:屏蔽效能随织物电导率增大而呈非线性提高;电磁波入射角增大引起针织物表面极化电流变化;多层轴向导电纱的衬入有效地改变了针织物性能,屏蔽效能更佳。仿真计算结果对针织物模型有良好的适用性,可为设计开发高性能柔性屏蔽针织物材料提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙天
张一曲
赵晓明
齐业雄
关键词:  针织物  屏蔽效能  结构模型  电磁仿真    
Abstract: In order to study the propagation law of electromagnetic wave in knitted fabric,the microstructure of weft-knitted fabric was modeled by SolidWorks software, and the simulation model was established by CST microwave studio. The finite integral method was adopted to compute the shielding effectiveness in 0—18 GHz range, including different conductivities, fabric structure, layer and direction of axial yarn and different incidence angles of electromagnetic wave. The result shows that the shielding effectiveness increases nonlinearly with the increase of the conductivity of the fabric. The electromagnetic wave incidence angle increase would cause the polarization effect of surface current density on the knitted fabric. The lining of multilayer axial conductive yarn can change the properties of knitted fabric effectively and the shielding efficiency is better. This simulation result has universal applicability and provides a theoretical basis for optimizing design of high performance flexible shielding knitted fabric.
Key words:  knitted fabric    shielding effectiveness    structural model    electromagnetic simulation
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TS101.8  
基金资助: 天津工业大学天津市高等学校基本科研业务资助项目(TJPU2K20170105);天津市教委科研计划项目(2017KJ070);天津市科委科技特派员项目(18JCTPJC62500);天津市自然科学基金面上项目(18JCYBJC86600);天津市自然科学基金重点项目(18JCZDJC99900);天津市级大学生创新创业训练计划项目(201810058054)
通讯作者:  texzhao@163.com   
作者简介:  孙天,天津工业大学纺织学院研究生,在赵晓明教授指导下进行研究,主要研究领域为电磁屏蔽织物仿真模拟。
赵晓明,天津工业大学纺织学院教授、博士研究生导师。英国赫尔瓦特大学博士,天津市千人计划专家,中国产业用纺织品行业协会特种纺织品分会秘书长, 主要从事柔性防护材料性能方面的研究,近5年在国内外重要期刊发表文章100多篇,申报发明专利20余项。
引用本文:    
孙天, 张一曲, 赵晓明, 齐业雄. 纬编针织物电磁屏蔽效能CST仿真分析[J]. 材料导报, 2019, 33(18): 3130-3134.
SUN Tian, ZHANG Yiqu, ZHAO Xiaoming, QI Yexiong. CST Simulation Analysis of Electromagnetic Shielding Effectiveness of Weft-knitted Fabric. Materials Reports, 2019, 33(18): 3130-3134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070014  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3130
[1] Liu L, Zhang D. Journal of Functional Materials, 2015,46(3),3016(in Chinese).刘琳, 张东. 功能材料, 2015,46(3),3016.
[2] Ghosh S, Remanan S, Mondal S, et al. Chemical Engineering Journal, 2018,344,138.
[3] He L, Cai Y J, Li Q. Materials Review A:Review Papers, 2018,32(4),1107(in Chinese).何林, 蔡永军, 李强. 材料导报:综述篇, 2018,32(4),1107.
[4] Wang J Z, Xi Z P, Tang H P, et al. Materials Review A:Review Papers, 2012,26(10),33(in Chinese).王建忠, 奚正平, 汤慧萍, 等.材料导报:综述篇, 2012,26(10),33.
[5] Chu L, Wen S. Knitting Industries, 2011(6),18(in Chinese).褚玲, 文珊. 针织工业, 2011(6),18.
[6] Wen S. Journal of Textile Research, 2004(6),79(in Chinese).文珊. 纺织学报, 2004(6),79.
[7] Li L, Liang R R, Xiao H, et al. New Chemical Materials, 2017(9),156(in Chinese).李丽, 梁然然, 肖红, 等. 化工新型材料, 2017(9),156.
[8] Cheng K B, Ramakrishna S, Lee K C. Composites Part A: Applied Scie-nce and Manufacturing, 2000,31(10),1039.
[9] Lin Z, Lou C, Pan Y, et al. Composites Science and Technology, 2017,141,74.
[10] Xiao H, Tang Z H, Wang Q, et al.Journal of Textile Research, 2015(2),35(in Chinese).肖红, 唐章宏, 王群, 等. 纺织学报, 2015(2),35.
[11] Xiao H, Shi M W, Chao S, et al. Journal of Textile Research, 2015(12),25(in Chinese).肖红, 施楣梧, 钞杉, 等. 纺织学报, 2015(12),25.
[12] Li Q J, liu C L, Zhou M, et al. Journal of Functional Materials, 2013(14),2041(in Chinese).李奇军, 刘长隆, 周明, 等. 功能材料, 2013(14),2041.
[13] Guan F, Xiao H, Shi M, et al. Textile Research Journal, 2016,88(5),566.
[14] Guan F, Xiao H, Shi M, et al. Textile Research Journal, 2016,86(20),2169.
[15] Su Q C, Zhao X M, Li W B, et al. Journal of Textile Research, 2016(2),155(in Chinese).苏钦城, 赵晓明, 李卫斌, 等. 纺织学报, 2016(2),155.
[16] Wang S J. Simulation research on three-dimensional fabric of weft knitted based on computer vision technology. Master’s Thesis, Zhejiang University of Technology, China,2012(in Chinese).王少俊. 基于计算机视觉技术的纬编针织物三维仿真研究.硕士学位论文,浙江理工大学,2012.
[17] Zhu Jinquan. New Technology & New Process, 2009(2),41(in Chinese).朱金权. 新技术新工艺, 2009(2),41.
[1] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed