Please wait a minute...
CLDB  2018, Vol. 32 Issue (8): 1367-1372    https://doi.org/10.11896/j.issn.1005-023X.2018.08.030
  计算模拟 |
纳米Fe2O3水泥基复合材料制备的响应曲面研究
邢小光1, 许金余1,2, 白二雷1, 朱靖塞1, 王谕贤1
1 空军工程大学机场建筑工程系,西安 710038;
2 西北工业大学力学与土木建筑学院,西安 710072
Response Surface Research of the Preparation of Nano-Fe2O3 Cement-based Composite
XING Xiaoguang1, XU Jinyu1,2, BAI Erlei1, ZHU Jingsai1, WANG Yuxian1
1 Department of Airfield and Building Engineering, Air Force Engineering University, Xi’an 710038;
2 College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 配制三种常用高效减水剂溶液,观察纳米Fe2O3在三种溶液中的分散效果;基于响应曲面正交旋转组合设计,并考虑纳米Fe2O3掺量(Nano-Fe2O3 content, NFC)、聚羧酸减水剂母液掺量(Polycarboxylate superplasticizer content, PSC)、水胶比(Water-binder rational, WBR)三因素,研究水泥硬化浆体的配比参数与强度间的响应曲面,分析各参数对强度的影响规律。结果表明:纳米Fe2O3在聚羧酸高性能减水剂母液溶液中分散效果最好;当配比参数 NFC=0.027、PSC=0.017 5、WBR=0.28时,水泥硬化浆体具有较高的强度;从统计学与实践角度来看,响应曲面方程具有较高的可靠性和精度;抗压强度随PSC的增大先增大后减小,随WBR的增大而减小,随NFC的增大而增大;最佳数值附近存在最适宜配方和掺量,使水泥基复合材料具有较好的强度和施工性;响应曲面法(Response surface methodology, RSM)可广泛应用于新型水泥基复合材料的研发领域,发展前景广阔。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢小光
许金余
白二雷
朱靖塞
王谕贤
关键词:  纳米Fe2O3  水泥基复合材料  响应曲面分析法(RSM)  制备技术  分散剂    
Abstract: To investigate the dispersing effect of nano-Fe2O3 in three kinds of commonly used superplasticizer solutions, these solutions were prepared. The effects of design parameters including nano-Fe2O3 content(NFC), polycarboxylate superplasticizer content(PSC) and the water-binder ratio(WBR) on compressive strength were evaluated based on the response surface orthogonal rotation combination design and using. Sequentially, the response surface between cement hardened paste design parameters and compressive strength was considered. The test result manifested that the dispersion effect of nano-Fe2O3 in polycarboxylate superplasticizer liquor solution was best. When NFC is 0.027, PSC is 0.017 5, WBR is 0.28, cement hardened paste can show favorable construction condition. The reliability and accuracy of response surface of nano-Fe2O3 cement-based composite can be verified in terms of statistics and application. Compressive strength increased up and then decreased with the increasing of PSC, decreased with the increa-sing of WBR, and increased with the increasing of NFC that suggested there was an optimum value generating the cement-based composite constructed favorable with superior compressive strength. RSM had a promising prospect to be widely used in the field of research and development on the new cement-based composite.
Key words:  nano-Fe2O3    cement-based composite    response surface methodology (RSM)    preparation technology    dispersing agent
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TU528.572  
作者简介:  邢小光:男,1993年生,硕士,助理工程师,研究方向为结构工程与防护工程 E-mail:xingxiaoguang@tju.edu.cn
引用本文:    
邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
XING Xiaoguang, XU Jinyu, BAI Erlei, ZHU Jingsai, WANG Yuxian. Response Surface Research of the Preparation of Nano-Fe2O3 Cement-based Composite. Materials Reports, 2018, 32(8): 1367-1372.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.030  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1367
1 Mondal P, Shah S P, Marks L D, et al. Comparative study of the effects of microsilica and nanosilica in concrete[J].Transportation Research Record,2010,13(2141):6.
2 Björnström J, Martinelli A, Matic A, et al. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement[J].Chemical Physics Letters,2004,392(1):242.
3 Du Y J, Han S J, Yao R F, et al. Experimental study on improving impermeability and frost resistance of concrete by nano-powder[J].Journal of Northwest Agriculture and Forestry University(Natural Science Edition),2004,32(7):107(in Chinese).
杜应吉,韩苏建,姚汝方,等.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J].西北农林科技大学学报(自然科学版),2004,32(7):107.
4 He X, Shi X. Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials[J].Transportation Research Record Journal of the Transportation Research Board,2008,2070(2070):13.
5 Qing Y E, Zhang Z N, Kong D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J].Journal of Building Materials,2003,6(4):381.
6 Morsy M S, Alsayed S H, Aqel M. Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar[J].International Journal of Civil & Environmental Engineering,2010,10:21.
7 Li H, Ou J P. Smart concrete and structures[J].Engineering Mechanics,2007,24(S2):45(in Chinese).
李惠,欧进萍.智能混凝土与结构[J].工程力学,2007,24(s2):45.
8 Wang W J, Guo C S,Zhu X R, et al. Study on modification of cement paste by nano silica fume[J].New Building Materials,2008,35(6):53(in Chinese).
王文军,郭昌生,朱向荣,等.纳米硅粉对水泥硬化浆体的改性研究[J].新型建筑材料,2008,35(6):53.
9 Li H, Xiao H G, Yuan J, et al. Microstructure of cement mortar with nano-particles[J].Composites Part B: Engineering,2004,35(2):185.
10 Zhang M H. Life-cycle performance of nano-pavement concrete[D].Harbin:Harbin Institute of Technology,2007(in Chinese).
张茂花.纳米路面混凝土的全寿命性能[D].哈尔滨:哈尔滨工业大学,2007.
11 Dong J M, Ma M B. Study of nanometer SiO2 strengthens the cement base material performance on different dispersing method[J].Concrete,2011(4):95(in Chinese).
董健苗,马铭彬.分散方法对纳米SiO2增强水泥基材料性能的影响[J].混凝土,2011(4):95.
12 Cui H Z, Yang J M, Lin J Z. Research progress on carbon nanotubes dispersion techniques and CNTs-reinforced cement-based materials[J].Materials Review A:Review Papers,2016,30(2):91(in Chinese).
崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报:综述篇,2016,30(2):91.
13 Naganathan S, Singh C S J, Shen Y W, et al. Nanotechnology in ci-vil engineering—A review[J].Advanced Materials Research,2014,935:151.
14 Myers R H, Montgomery D C. Response surface methodology[J].Wiley Interdisciplinary Reviews Computational Statistics,2010,2(2):128.
15 Contreras M D M, Hernández-Ledesma B, Amigo L, et al. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology[J].LWT - Food Science and Technology,2011,44(1):9.
16 Zhang E, Chang J, Zhang L, et al. Optimization of thiourea-assisted silver leaching from sintering dust by response surface methodology[J].Materials Review A: Review Papers,2016,30(2):130(in Chinese).
张佴栋,常军,张利波,等.响应曲面法优化硫脲浸出烧结灰中银的工艺研究[J].材料导报:综述篇,2016,30(2):130.
17 Shi H X, Yu Z L, He X C, et al. Optimization of cold isostatic pressing process of isotropic graphite by response surface methodo-logy[J].Materials Review B:Research Papers,2015,19(2):147(in Chinese).
施辉献,于站良,和晓才,等.响应曲面法优化各向同性石墨的冷等静压成型工艺[J].材料导报:研究篇,2015,29(2):147.
18 Senn S. Encyclopedia of biopharmaceutical statistics[J].Technometrics,2003,43:115.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[4] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[5] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[6] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[7] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[8] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[9] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[10] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[11] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[12] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[13] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[14] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[15] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed