Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 101-104    https://doi.org/10.11896/j.issn.1005-023X.2017.024.020
  材料研究 |
仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究
吉海燕1,范亚敏1,吴殿国1,费 婷1,黄济华1,许 晖2,李华明2
1 江苏大学材料科学与工程学院,镇江 212013;
2 江苏大学能源研究院,镇江 212013
Preparation and Properties of Biomimetic Superhydrophobic Polypropylene/Titanium Dioxide Films
JI Haiyan1, FAN Yamin1, WU Dianguo1, FEI Ting1, HUANG Jihua1, XU Hui2, LI Huaming2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013;
2 Institute for Energy Research, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简便的相分离法制备出超疏水PP/TiO2复合薄膜。该复合薄膜表面与水的接触角为169°,滚动角小于4°。pH 值为1~14 的水溶液在其表面都具有很高的接触角,均大于160°。对其表面进行扫描电子显微镜分析可知,该薄膜具有类花瓣二元微纳米复合微观结构,这种结构可捕获空气,形成水与基底之间的气垫,对表面超疏水性的产生起到了关键作用。用Cassie理论对其表面超疏水进行分析,结果表明,约2.7%的面积是水滴和基体接触,而有约97.3%的面积是水滴和空气接触。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉海燕
范亚敏
吴殿国
费 婷
黄济华
许 晖
李华明
关键词:  超疏水  聚丙烯  二氧化钛  接触角    
Abstract: A facile method of phase separation was developed for fabricating the superhydrophobic polypropylene/titanium dioxide film. The prepared film showed superhydrophobicity with a high contact angle (169°) and low sliding angle (less than 4°). Moreover,the surface showed high contact angle (larger than 160°) for all the solution with pH value ranging from 1 to 14. Scanning electron microscopy images presented a kind of flower-like and micro/nano binary structure on the obtained polypropylene/titanium surface, which could trap air and form air cushion between water and the surface. Thus this micro/nano hierarchical structure played an important role in the formation of the superhydrophobicity. The superhydrophobic phenomenon of the prepared surface was analyzed according to Cassie theory, and it was proposed that only about 2.7% of the water contact surface was contacted with the substrate and the rest 97.3% was contacted with the air cushion.
Key words:  superhydrophobic    polypropylene    titanium dioxide    contact angle
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TB17  
基金资助: 国家自然科学基金(21507046);江苏省自然科学基金(BK20130513);江苏大学大学生科研立项资助项目(14A336;14A302)
作者简介:  吉海燕:女,1979年生,博士,副教授,主要从事超疏水材料的制备及性能研究 E-mail: hyji1013@ujs.edu.cn
引用本文:    
吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
JI Haiyan, FAN Yamin, WU Dianguo, FEI Ting, HUANG Jihua, XU Hui, LI Huaming. Preparation and Properties of Biomimetic Superhydrophobic Polypropylene/Titanium Dioxide Films. Materials Reports, 2017, 31(24): 101-104.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.020  或          https://www.mater-rep.com/CN/Y2017/V31/I24/101
1 Feng X J, Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Adv Mater, 2006,18:3063.
2 Shirtcliffe N J, McHale G, Perry C C, et al. Dual-scale roughness produces unusually water-repellent surfaces[J]. Adv Mater, 2004,16:1929.
3 Zhang S N, Huang J Y, Tang Y X, et al. Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures[J]. Small, 2017,13:1.
4 Peng C Q, Xing S L, Yuan Z Q, et al. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Appl Surf Sci, 2012,259:764.
5 Chapman J, Regan F. Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor application advancing deployment with answers from nature[J].Adv Eng Mater, 2012,14:175.
6 She Z X, Qing L, Wang Z W, et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J].Chem Eng J, 2013,228:415.
7 Vinogradova O I, Dubov A L. Superhydrophobic textures for microfluidics[J]. Mendeleev Commun, 2012,22:229.
8 Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a super hydrophobic surface[J]. Science, 2003,299:1377.
9 Feng L, Li S, Li Y, et al. Superhydrophobic surfaces: From natural to artificial[J]. Adv Mater, 2002,14:1857.
10Shirtcliffe N J, McHale G, Perry C C. Intrinsically superhydrophobic organosilica sol-gel foams[J]. Langmuir, 2003, 19:5626.
11Zhang X, Shi F, Yu X, et al. Polyelectrolyte multilayer as matrix froelectrochemical deposition of gold clusters: toward superhydrophobic surface[J]. J Am Chem Soc, 2004,126:3064.
12Zhao N, Xie Q D, Weng L H, et al. Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J]. Macromolecules,2005,38:8996.
13Cassie A B D, Baxter S. Effects of surface roughness onwettability of solid surfaces[J]. Trans Faraday Soc, 1944,40:546.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[3] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[4] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[7] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[8] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[9] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[10] 李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
[11] 李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
[12] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[13] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed