Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040297-6    https://doi.org/10.11896/cldb.22040297
  金属与金属基复合材料 |
高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能
张健1, 朱智浩1, 张爽2, 董闯1,*
1 大连理工大学三束材料改性教育部重点实验室,辽宁 大连 116024
2 大连交通大学材料科学与工程学院,辽宁 大连 116028
Microstructure and Mechanical Properties of Ti-Al-Mo-Nb-V Metastable β-type Alloys Alloying with High Al Content
ZHANG Jian1, ZHU Zhihao1, ZHANG Shuang2, DONG Chuang1,*
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology) Ministry of Education, Dalian 116024, Liao-ning, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
下载:  全 文 ( PDF ) ( 8375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,亚稳β钛合金的成分朝着更高Al含量和更高β稳定元素含量的方向发展,本工作基于典型亚稳β钛合金β-21S和TB18的成分设计思路,添加了更高含量的Al元素,同时添加了Mo、Nb、V三种β稳定元素,设计并利用铜模吸铸法制备了高Al含量的亚稳β型Ti-Al-(Mo,Nb,V)系列钛合金。结果表明,Ti-6.5Al-1.5V-11.5Mo-2.8Nb合金在吸铸态下的β相结构达到临界稳定状态。此时,该合金的拉伸屈服强度为623 MPa,延伸率为16.6%,其屈服强度略低于对标合金TB18,但延伸率明显高于同系列合金和TB18合金,具有最佳的综合力学性能。此外,该合金液固温区为31 ℃,在同系列合金中最低,且明显低于对标合金TB18的液固温区238 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张健
朱智浩
张爽
董闯
关键词:  亚稳β钛合金  高Al含量  显微组织  力学性能    
Abstract: At present, the composition of metastable β-titanium alloys is developing towards higher β-stable elements and higher Al content. In this work, Ti-Al-(Mo, Nb, V) metastable β-type alloys were first designed via higher Al content and Mo, Nb and V co-alloying after analyzing the composition of typical metastable β-Ti β-21S and TB18, and prepared by copper-mold suction-casting method. It was found that Ti-6.5Al-1.5V-11.5Mo-2.8Nb alloy possesses a critical stable β-phase structure at as-cast state. At this time, this alloy shows excellent tensile yield strength of 623 MPa and elongation of 16.6%, with the best comprehensive mechanical properties, of which its yield strength is slightly lower than that of the reference TB18 alloy, but the elongation is significantly higher than those of same alloy series and TB18 alloy. In addition, its solidification ranges is 31 ℃, which is lower than that of the same series of alloys, particularly much below the 238 ℃ of TB18 alloy.
Key words:  metastable β-titanium alloy    high Al content    microstructure    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG146.2  
基金资助: 大连市科技创新基金重点学科重大课题(2020JJ25CY004);军委科技委2020年重点基础研究项目(2020JCJQZD165)
通讯作者:  *董闯,大连理工大学材料科学与工程学院教授、博士研究生导师。1988年7月本硕毕业于大连理工大学材料科学与工程学院,1991年7月在法国洛林国立理工大学材料学院取得博士学位,1992—1994年分别在法国南锡矿业学院和中国科学院北京电子显微镜重点实验室进行博士后研究工作。先后获得国家教委科技进步一等奖、辽宁省青年科技拔尖人才、国家百千万人才工程、大连市优秀专家、国务院颁发的政府特殊津贴、中国青年科技奖、辽宁省十大杰出青年、中国大陆高引用SCI论文奖、辽宁省青年学科带头人、教育部长江奖励计划特聘教授等。主要从事载能束材料改性、准晶及非晶材料、合金相成分设计、材料微结构的研究。近年来,著有《准晶材料》(1998,国防工业出版社),发表论文 100 余篇,SCI引用总次数为530,单篇最高为94次,申请专利4项。dong@dlut.edu.cn   
作者简介:  张健,2020年6月于中国地质大学(武汉)获得工学学士学位。现为大连理工大学材料科学与工程学院硕士研究生,在董闯教授的指导下进行研究。目前主要研究领域为基于团簇加连接原子模型的β-Ti合金成分设计。
引用本文:    
张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
ZHANG Jian, ZHU Zhihao, ZHANG Shuang, DONG Chuang. Microstructure and Mechanical Properties of Ti-Al-Mo-Nb-V Metastable β-type Alloys Alloying with High Al Content. Materials Reports, 2024, 38(2): 22040297-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040297  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22040297
1 Xin S W, Zhou W, Li Q, et al. Materials China, 2021, 40(6), 441(in Chinese).
辛社伟, 周伟, 李倩, 等. 中国材料进展, 2021, 40(6), 441.
2 Gao Y S, Li S Q, Zhang G, et al. Special Casting & Nonferrous Alloys, 2014, 34(10), 1111(in Chinese).
高玉社, 李少强, 张钢, 等. 特种铸造及有色合金, 2014, 34(10), 1111.
3 Li S Q, Gong Z P, Li H, et al. Rare Metal Materials and Engineering, 2020, 49(9), 3045(in Chinese).
李少强, 弓站朋, 李辉, 等. 稀有金属材料与工程, 2020, 49(9), 3045.
4 Lu B H. China Mechanical Engineering, 2020, 31(1), 19(in Chinese).
卢秉恒. 中国机械工程, 2020, 31(1), 19.
5 Wang F, Lei L M, Fu X, et al. Materials Science and Engineering, 2020, 782, 139284. 1.
6 Thmas J, Mogonye J E, Mantri S A, et al. Additive Manufacturing, 2020, 33, 101132.
7 Zhang Y, Wang H J, Chen S M, et al. Heat Treatment of Metals, 2022, 47(3), 124(in Chinese).
张颖, 王浩军, 陈素明, 等. 金属热处理, 2022, 47(3), 124.
8 Zhang Y, Li M X, Hu S S, et al. Special Casting & Nonferrous Alloy, 2022, 42(4), 436(in Chinese).
张颖, 李明祥, 胡生双, 等. 特种铸造及有色合金, 2022, 42(4), 436.
9 Vrancken B, Thijs L, Kruth J P, et al. Acta Materialia, 2014, 68, 150.
10 Liu C M, Tian X J, Tang H B, et al. Journal of Alloys and Compounds, 2013, 572, 17.
11 Mantri S A, Choudhuri D, Alam T, et al. Scripta Materialia, 2018, 154, 139.
12 Cao S, Zhang S Z, Liu J R, et al. Computational Materials Science, 2021, 197, 110620.
13 Jiang B B. Composition design approach based on cluster structure model of multi-component Ti alloys and their properties. Ph. D. Thesis, Dalian University of Technology, China, 2019(in Chinese).
姜贝贝. 基于团簇结构模型的多元Ti合金成分设计方法和性能研究. 博士学位论文, 大连理工大学, 2019.
14 Dong C, Wang Z J, Zhang S, et al. International Materials Reviews, 2019, 65, 286.
15 Pual J. Joumal of Metals, 1994, 64(7), 16.
16 Bania P J. ISIJ International, 1991, 31(8), 840.
17 Leyens C, Peters M, Chen Z H, et al. Titanium and titanium alloy, Chemical Industry Press, China, 2005, pp. 14(in Chinese).
莱茵斯, 皮特尔斯, 陈振华, 等. 钛与钛合金, 化学工业出版社, 2005, pp. 14.
18 Kolli R P, Devaraj A. Metals, 2018, 8(7), 506.
19 Liu Z D, Du Z X, Jiang H Y, et al. Progress in Natural Science:Materials International, 2021, 31(5), 731.
20 Qi L C, Zhang K C, Xiao W L, et al. Journal of Aeronautical Materials, 2020, 40(3), 110(in Chinese).
齐立春, 张凯超, 肖文龙, 等. 航空材料学报, 2020, 40(3), 110.
21 Guo S, Shang Y, Zhang J S. Intermetallics, 2017, 86, 20.
22 Liu J P, Wang D Y, Hao Y L. Scientific Reports, 2013, 3(1), 2156.
23 Zhu Z H, Liu T Y, Dong C, et al. Journal of Materials Research and Technology, 2022, 18, 2582.
24 Tayyeb A, Wang L, Cheng X W, et al. Journal of Materials Science & Technology, 2021, 78, 238.
25 Wang W T, Li P, Kou W J, et al. Rare Metal Materials and Enginee-ring, 2020, 49(5), 1707(in Chinese).
王文婷, 李沛, 寇文娟, 等. 稀有金属材料与工程, 2020, 49(5), 1707.
26 Liu T Y, Zhang S, Wang Q, et al. Science China Technological Sciences, 2021, 64, 1732.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed