Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 88-91    https://doi.org/10.11896/j.issn.1005-023X.2017.014.018
  材料研究 |
冷轧结合T6热处理对7075铝合金组织和性能的影响*
崔歆炜, 徐晓峰, 宁玉恒, 赵宇光
吉林大学材料科学与工程学院, 长春 130025;
Microstructure and Mechanical Properties of 7075 Al Alloy Processed by Combined Cold-rolling and T6 Heat-treatment
CUI Xinwei, XU Xiaofeng, NING Yuheng, ZHAO Yuguang
College of Materials Science and Engineering, Jilin University, Changchun 130025;
下载:  全 文 ( PDF ) ( 2801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将7075铝合金经过先冷轧(Cold rolling,CR)后T6热处理(CR+T6)和先T6热处理后冷轧(T6+CR)两种方式进行处理,采用金相显微镜、透射电镜,结合材料拉伸力学性能分析研究了变形和热处理相结合对Al-Zn-Mg-Cu合金的影响。结果表明,先冷轧后T6热处理对合金抗拉强度和延伸率影响不大,而先T6热处理后冷轧的试样屈服强度和抗拉强度随着变形量的增大显著提高。T6+40%(T6+CR的最优参数)与60%+T6(CR+T6的最优参数)的试样相比消耗的能量少且强度和塑性都更好。不同程度的晶界强化和位错强化是促使CR+T6和T6+CR处理试样力学性能改变的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔歆炜
徐晓峰
宁玉恒
赵宇光
关键词:  铝合金  冷轧  时效  显微组织  力学性能    
Abstract: In order to examine the combined effect of plastic deformation and the T6 treatment on Al-Zn-Mg-Cu alloys, a 7075 Al alloy was subjected to cold-rolling (CR) deformation and T6 heat-treatment (T6) in two different routes of CR+T6 (CR followed with T6) and T6+CR (T6 treatment followed with CR), respectively, and characterized by optical microscopy, transmission electron microscope, and mechanical tensile property measurement. The results show that the cold-rolling before T6 heat treatment has less influences on the tensile strength and elongation of the CR+T6 samples. While the yield strength and ultimate tensile strength of T6+CR samples are remarkably improved with increasing the deformation, and the T6+40% deformation (the optimized T6+CR) sample exhibits superior strength with adequate plasticity, with less energy consumption compared with the 60% deformation T6 sample (the optimized CR+T6). Microstructure investigation reveals that the grain-boundary strengthening and dislocation streng-thening are the primary reasons for the improved mechanical properties of CR+T6 and T6+CR samples.
Key words:  aluminum alloy    cold rolling    aging    microstructure    mechanical property
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51071075)
作者简介:  崔歆炜:女,1990年生,硕士,研究方向为金属材料强韧化 E-mail:cuixw14@mails.jlu.edu.cn 赵宇光:通讯作者,男,1955年生,博士,教授,博士研究生导师,研究方向为金属基复合材料、电致强化、高强耐热铝合金与合金强韧化 E-mail:zhaoyg@jlu.edu.cn 徐晓峰:通讯作者,男,1986年生,博士,讲师,研究方向为电致强化、高强耐热铝合金与合金强韧化 E-mail:xuxiaofeng@jlu.edu.cn
引用本文:    
崔歆炜, 徐晓峰, 宁玉恒, 赵宇光. 冷轧结合T6热处理对7075铝合金组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 88-91.
CUI Xinwei, XU Xiaofeng, NING Yuheng, ZHAO Yuguang. Microstructure and Mechanical Properties of 7075 Al Alloy Processed by Combined Cold-rolling and T6 Heat-treatment. Materials Reports, 2017, 31(14): 88-91.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.018  或          https://www.mater-rep.com/CN/Y2017/V31/I14/88
1 Wu Y,Wen T,Zhu Z T. Development of research and application of aging treatment technology on 7xxx series aluminum alloys[J]. Mater Rev:Rev,2012,26(8):114(in Chinese).
吴颖,温彤,朱曾涛. 7xxx系铝合金时效处理的研究现状及应用进展[J]. 材料导报:综述篇,2012,26(8):114.
2 Song Y,Yang X Q,Cui L,et al.Defect features and mechanical pro-perties of friction stir lap welded dissimilar AA2024-AA7075 aluminum alloy sheets [J]. Mater Des,2014,55(55):9.
3 Wu H P,Wang Z X,Ma Y L,et al. Root cause for lighted structure on the cross section of rolled 5182 aluminum alloy plate [J]. J Chongqing University of Technology:Nat Sci,2017,31(4):58(in Chinese).
吴海鹏,王正曦,麻彦龙,等. 5182铝合金轧制板材截面亮线组织形成机理研究[J].重庆理工大学学报:自然科学,2017,31(4):58.
4 Shaeri M H,Salehi M T,Seyyedein S H,et al.Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment [J]. Mater Des,2014,57(5):250.
5 Naimi A,Yousfi H,Trari M. Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys [J]. Mechan Time-Dependent Mater,2013,17(3):285.
6 Ma K,Wen H,Hu T,et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater,2014,62(5):141.
7 Estrin Y,Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Mater,2013,61(3):782.
8 Zhu R F,Liu J N,Tang G Y,et al. Properties,microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment [J]. J Alloys Compd,2012,544(24):203.
9 Panigrahi S K,Jayaganthan R. Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling [J]. Mater Des,2011,32(6):3150.
10 Eddahbi M,Jimenez J A,Ruano O A. Microstructure and creep behaviour of an Osprey processed and extruded Al-Cu-Mg-Ti-Ag alloy [J]. J Alloys Compd,2007,433:97.
11 Viana F,Pinto A M P,Santos H M C,et al. Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization [J]. J Mater Process Technol,1999,92(99):54.
12 Bydogan M,et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets [J]. Metall Mater Trans A,2008,39(39):2470.
13 Liu X Y,Pan Q L,Lu Z L,et al. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy [J]. Mater Des,2010,31:4392.
14 Tajally M,Huda Z,Masjuki H H. Effect of deformation and recrystallization conditions on tensile behavior of aluminum alloy 7075 [J]. Metal Sci Heat Treatment,2011,53(3):165.
15 Jian H G,Jiang F,Xu Z Y,et al. Study progress of high strength and tenacity Al-Zn-Mg-Cu aluminum alloy for aviation [J]. Mater Heat Treatment,2006,35(12):61(in Chinese).
蹇海根,姜锋,徐忠艳,等. 航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展[J].热加工工艺,2006,35(12):61
16 Rao A C U,Vasu V,Govindaraju M,et al. Influence of cold rolling and annealing on the tensile properties of aluminum 7075 alloy [J]. Procedia Mater Sci,2014,5:86.
17 Wang D,Ma Z Y. Effects of rolling process on microstructure and mechanical property of 7075 aluminum alloy [J]. Acta Metall Sin,2008,44(1):49(in Chinese).
王东,马宗义. 轧制工艺对7050铝合金显微组织和力学性能的影响[J].金属学报,2008,44(1):49.
18 Cheng S,Zhao Y H,Zhu Y T,et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Mater,2007,55(17):5822.
19 Somekawa H,Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys [J]. Mater Sci Eng A,2013,561:378.
20 Zhu Y H,Jiang J,Xiao Y K,et al. Electropulsing-induced microstructure evolution and its effect on electrical conductivity of (Bi0.25-Sb0.75)2Te3 thin films [J]. Scripta Mater,2013,69(3):219.
21 Zheng R,Sun Y,Ametama K,et al. Optimizing the strength and ductility of spark plasma sintered Al 2024 alloy by conventional thermo-mechanical treatment [J]. Mater Sci Eng A,2013,590(1):147.
22 Zhao Y L,Yang Z Q,et al. Double-peak age strengthening of cold-worked 2024 aluminum alloy [J]. Acta Mater,2013,61(5):1624.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed