Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 82-87    https://doi.org/10.11896/j.issn.1005-023X.2017.014.017
  材料研究 |
层间配置对成层式铝蜂窝吸能特性的影响*
罗伟铭, 石少卿, 陈自鹏, 孙建虎
后勤工程学院军事土木工程系, 重庆 401311;
Influence of Layer Configuration on the Energy Absorption of Layered Aluminum Honeycomb
LUO Weiming, SHI Shaoqing, CHEN Zipeng, SUN Jianhu
Department of Civil Engineering, Logistical Engineering University, Chongqing 401311;
下载:  全 文 ( PDF ) ( 1767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了考察层间配置对成层式铝蜂窝吸能特性的影响,设计了由4种类型铝蜂窝组成的多种成层式铝蜂窝结构,主要包括单层、双层、三层、四层的组合形式,分别对其进行准静力单轴压缩试验。结果表明:峰值力和平均平台力与面密度成正比,但随着蜂窝高度的增加,二者略微下降;等质量等尺寸的条件下,成层式蜂窝优于单层蜂窝;对比双层铝蜂窝结构发现,不等高成层结构更具缓冲吸能优势;对于同种蜂窝,随着叠层数的增加,MP值逐渐下降;根据压溃行为分析可知,当成层式铝蜂窝结构的层数大于等于4时,不能充分发挥其缓冲吸能作用。考虑到降低峰值力同时提高吸能水平,将上下层设置较硬型铝蜂窝、中间层设置较软型铝蜂窝的成层式结构可优先选择。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗伟铭
石少卿
陈自鹏
孙建虎
关键词:  层间配置  铝蜂窝  吸能    
Abstract: To investigate the effect of layer configuration on the energy absorption of layered aluminum honeycomb, the expe-riments of layered aluminum honeycomb structure under quasi-static load was carried out, mainly includes single, double, triple, four layer combinations. The results showed that the peak force and the mean plateau force of single-layer aluminum honeycomb structure were proportional to the surface density but declined slightly with increase of the height. Layered aluminum honeycomb is better than single layer honeycomb though the mass and size is the same. The double layered aluminum honeycomb structure with unequal height has more advantage in cushion performance. For the same honeycomb,with the increase of number of layers,MP values show a trend of gradual decline. According to the crush behavior of layered aluminum honeycomb, it could be inferred that energy absorption of honeycomb cannot fully play its role when the number of layers is no less than four. Placing soft layer between hard layers is a better choice.
Key words:  layer configuration    aluminum honeycomb    energy absorption
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB301  
基金资助: *国家自然科学基金(51378495;51408602)
作者简介:  罗伟铭:男,1988年生,博士研究生,主要研究方向为结构工程 E-mail:lwmofficial@163.com
引用本文:    
罗伟铭, 石少卿, 陈自鹏, 孙建虎. 层间配置对成层式铝蜂窝吸能特性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 82-87.
LUO Weiming, SHI Shaoqing, CHEN Zipeng, SUN Jianhu. Influence of Layer Configuration on the Energy Absorption of Layered Aluminum Honeycomb. Materials Reports, 2017, 31(14): 82-87.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.017  或          https://www.mater-rep.com/CN/Y2017/V31/I14/82
1 Khan M K , Baig T, Mirza S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb[J]. Mater Sci Eng A,2012,539(2):135.
2 Wilbert A, Jang W Y, Kyriakids S, et al. Bulkling and progressive crushing of laterally loaded honeycomb[J]. Int J Solids Struct,2011,48(5):803.
3 Wang Chuang, Liu Rongqiang, Deng Zongquan, et al. Experimental and numerical studies on aluminum honeycomb structure with va-rious cell specifications under impact loading[J]. J Vibration Shock,2008,27(11):56(in Chinese).
王闯, 刘荣强, 邓宗全,等. 铝蜂窝结构的冲击动力学性能的试验及数值研究[J]. 振动与冲击,2008,27(11):56.
4 Xu Shanqing, Beynon J H, Ruan Dong, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Compos Struct,2012,94(8):2326.
5 Xu Shanqing, Ruan Dong, Beynon J H, et al. Finite element analysis of the dynamic behavior of aluminum honeycombs[J]. Int J Computa Methods,2014,11(1):1.
6 Sun Deqiang, Zhang Weihong, Wei Yanbin. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings[J]. Compos Struct,2010,92(11):2609.
7 Niknejad A, Rahmani D M. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns[J]. Mater Des,2014,53:250.
8 Lu Wenhao, Bao Ronghao. Mechanical analysis of the impacted ho-neycombs[J]. J Vib Shock,2005,24(1):49(in Chinese).
卢文浩, 鲍荣浩. 动态冲击下蜂窝材料的力学行为[J]. 振动与冲击,2005,24(1):49.
9 Wu Enboa, Jiang Wushung. Axial crush of metallic honeycombs[J]. Int J Impact Eng,1997,19(5):439.
10 Tan Sibo, Hou Bing, Li Yulong, et al. Effect of base materials on the dynamic enhancement of aluminum honeycombs[J]. Int J Impact Eng,2015,35(1):16.
11 Ashab A, Ruan D, Lu G X, et al. Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation[J]. Mater Des,2015,74:138.
12 Lin Yuliang,Zhang Zhifeng,Chen Rong,et al. Cushioning and ener-gy absorbing property of combined aluminum honeycomb[J]. Adv Eng Mater,2015,17(10):1434.
13 Lei Cao, Lin Yuliang, Lu Fangyun, et al. Experimental study on the shock absorption performance of combined aluminium honeycombs under impact loading[J]. Shock Vibration,2015,2015:1.
[1] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[2] 张奇, 张震东, 任杰, 姚琳, 吴林华. 正六边形玻璃纤维多胞结构面外准静态压缩试验[J]. 材料导报, 2023, 37(7): 21090225-8.
[3] 郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
[4] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[5] 王文权, 王苏煜, 徐宇欣, 张新戈, 毕英超, 石磊. 胶接与钎焊铝蜂窝板力学性能研究[J]. 材料导报, 2022, 36(23): 21070282-6.
[6] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[7] 张光成, 郭超群, 闫治坤, 周芸, 左孝青. 泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性[J]. 材料导报, 2021, 35(24): 24158-24163.
[8] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[9] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[10] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[11] 罗伟铭, 石少卿, 廖瑜, 孙建虎. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 《材料导报》期刊社, 2018, 32(8): 1328-1332.
[12] 戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
[13] 刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed