Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25020154-11    https://doi.org/10.11896/cldb.25020154
  无机非金属及其复合材料 |
海上风电制氢输运材料的研发现状及趋势
屈少鹏1,*, 张海强1, 杨璐嘉1, 李鑫2, 何东昱3
1 上海海事大学海洋科学与工程学院,上海 201306
2 国家电投集团科学技术研究院有限公司,北京 102200
3 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen
QU Shaopeng1,*, ZHANG Haiqiang1, YANG Lujia1, LI Xin2, HE Dongyu3
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 State Power Investment Group Science and Technology Institute Co., Ltd., Beijing 102200, China
3 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
下载:  全 文 ( PDF ) ( 22247KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能作为一种绿色的二次能源,在全球气候变化应对中扮演着关键的角色;海上风电制氢是生产绿氢的重要途径之一,目前已成为全球研究的热点方向之一。为配合氢能大规模产业化应用,亟待研发海上风电制氢输运材料,这些材料既要满足临氢材料安全性的要求,还要满足海洋复杂工况条件下的可靠性要求。本文以海上风电制氢输运材料为对象,总结了海上风电制氢输运材料面临的研发难点以及失效形式和相关机理,介绍了海底管道输运及海洋船舶输运两种典型的海上风电制氢输运方式,结合氢能的不同状态分别对两种典型氢输运方式涉及的输运材料的研发现状进行了整理,最后从材料优化、表面处理等方面展望了海上风电制氢输运材料的研发趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈少鹏
张海强
杨璐嘉
李鑫
何东昱
关键词:  海上风电制氢  氢输运材料  氢损伤  氢渗透  阻氢涂层    
Abstract: Hydrogen energy, recognized as a green secondary energy, plays a crucial role in the global response to climate change. Offshore wind to hydrogen is one of the important ways for producing green hydrogen and has currently become one of the research hotspots globally. For large-scale industrial application of hydrogen energy, it is essential to develop transport materials for offshore wind to hydrogen, which not only need to meet the safety requirements for hydrogen environments, but also satisfy the reliability for complex marine conditions. Hydrogen transport materials for offshore wind to hydrogen are taken as the object in this work. The research challenges, failure forms and related mechanisms of hydrogen transport materials in offshore wind to hydrogen are summarized. Two typical transport modes of hydrogen production from offshore wind power, submarine pipeline transport and marine ship transport, are introduced. The current research status of the transport materials involved in two typical hydrogen transport methods, considering the different states of hydrogen energy, are sorted out respectively. Finally, the development trends of hydrogen transport materials for offshore wind to hydrogen are prospected from the aspects of material optimization and surface treatment.
Key words:  offshore wind to hydrogen    hydrogen transport materials    hydrogen damage    hydrogen permeation    hydrogen barrier coating
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TB304  
基金资助: 国家自然科学基金(51701115);中国科学院海洋新材料与应用技术重点实验室开放基金(2016K04)
通讯作者:  *屈少鹏,博士,上海海事大学海洋科学与工程学院硕士研究生导师,主要研究领域为金属材料及其腐蚀与防护。spqu@shmtu.edu.cn   
引用本文:    
屈少鹏, 张海强, 杨璐嘉, 李鑫, 何东昱. 海上风电制氢输运材料的研发现状及趋势[J]. 材料导报, 2026, 40(2): 25020154-11.
QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen. Materials Reports, 2026, 40(2): 25020154-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020154  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25020154
1 Sun P Y, Jiang Z B, Chen Y G, et al. Scientia Sinica Technologica, 2025, 55(3), 423 (in Chinese).
孙朋元, 江志兵, 陈友淦, 等. 中国科学:技术科学, 2025, 55(3), 423.
2 Global Wind Energy Council. Global Wind Report 2022, 2022.
3 Energy Research Institute, NDRC, P. R. C, International Energy Agency. 中国风电发展路线图2050, 2011.
4 Mazza A, Bompard E, Chicco G. Renewable and Sustainable Energy Reviews, 2018, 92, 794.
5 国家能源局. https://www.nea.gov.cn/2022-03/23/c_1310525755.htm.
6 Xie H, Zhao Z Y, Wu Y F, et al. Nature, 2022, 612, 673.
7 Liu T, Zhao Z Y, Tang W B, et al. Nature Communications, 2024, 15, 5305.
8 Liu T, Lan C, Tang M, et al. Nature Communications, 2024, 15, 8874.
9 Zhang B F, Zhang C G, Yang O, et al. ACS Nano, 2022, 16(9), 15286.
10 Xian K. China Resources Comprehensive Utilization, 2023, 41(9), 166 (in Chinese).
宪凯. 中国资源综合利用, 2023, 41(9), 166.
11 Takahashi R, Kinoshita H, Murata T, et al. IEEE Transactions on Industrial Electronics, 2010, 57(2), 485.
12 De-Troya J J, Alvarez C, Fernandez-Garrido C, et al. International Journal of Hydrogen Energy, 2016, 41(4), 2853.
13 Cavo M, Gadducci E, Rattazzi D, et al. International Journal of Hydrogen Energy, 2021, 46(64), 32630.
14 Su X, Xu J H, Liang B L, et al. Journal of Energy Chemistry, 2016, 25(4), 553.
15 Wang Y H, Gao W G, Li K Z, et al. Chemistry, 2020, 6(2), 419.
16 Xu D, Wang Y Q, Ding M Y, et al. Chemistry, 2021, 7, 849.
17 Li Z L, Wang J J, Qu Y Z, et al. ACS Catalysis, 2017, 7(12), 8544.
18 Zheng J Y, Ma K, Ye S, et al. Pressure Vessel Technology, 2022, 39(3), 1 (in Chinese).
郑津洋, 马凯, 叶盛, 等. 压力容器, 2022, 39(3), 1.
19 Cheng Y F. Oil & Gas Storage and Transportation, 2023, 42(1), 1 (in Chinese).
程玉峰. 油气储运, 2023, 42(1), 1.
20 Zhou Q J, Qiao L J, Qi H B, et al. Journal of Non-Crystalline Solids, 2007, 353, 4011.
21 Ren X C, Shan G B, Chu W Y, et al. Chinese Science Bulletin, 2005, 50(17), 1962.
22 Laureys A, Depover T, Petrov R, et al. Materials Characterization, 2016, 112, 169.
23 Xing Y Y, Yang Z L, Yao X C, et al. International Journal of Pressure Vessels and Piping, 2022, 196, 104620.
24 Ferrin P, Kandoi S, Nilekar A U, et al. Surface Science, 2012, 606(7-8), 679.
25 Rusman N A A, Dahari M. International Journal of Hydrogen Energy, 2016, 41, 12108.
26 Zhao J W, Wang X G, Yang Q Q, et al. International Journal of Hydrogen Energy, 2022, 47(93), 39572.
27 Zhang D N, Ding N, Zhang Z, et al. Advances in New and Renewable Energy, 2022, 10(1), 15 (in Chinese).
张冬娜, 丁楠, 张兆, 等. 新能源进展, 2022, 10(1), 15.
28 Yan J Y, Cao G P. Macromolecules, 2023, 56(11), 3774.
29 Cazenave P, Jimenez K, Gao M, et al. Journal of Pipeline Science and Engineering, 2021, 1(1), 100.
30 Zheng J Y, Liu X X, Xu P, et al. International Journal of Hydrogen Energy, 2012, 37(1), 1048.
31 Sun Y H, Cheng Y F. Engineering Failure Analysis, 2022, 133, 105985.
32 Wasim M, Djukic M B. International Journal of Hydrogen Energy, 2020, 45(3), 2145.
33 Robertson I M, Sofronis P, Nagao A, et al. Metallurgical and Materials Transactions B, 2015, 46(3), 108.
34 Neeraj T, Srinivasan R, Li J. Acta Materialia, 2012, 60, 5160.
35 Qu S P, Zhao X Y, Xuan X Y. Materials Science and Technology, 2023, 31(6), 19 (in Chinese).
屈少鹏, 赵行娅, 轩星雨. 材料科学与工艺, 2023, 31(6), 19.
36 Sutcliffe E, Srinivasan R. Journal of Applied Physics, 1986, 60(9), 3315.
37 Morita K, Yamashita H, Yabuuchi N, et al. Progress in Organic Coa-tings, 2015, 78, 183.
38 Zhang S Y, Li S J, Luo X W, et al. Corrosion Science, 2000, 42, 2037.
39 Ronevich J A, D’Elia C R, Hill M R. Engineering Fracture Mechanics, 2018, 194, 42.
40 Guo J X, Yang J, Zhao Y Z, et al. International Journal of Hydrogen Energy, 2014, 39, 13926.
41 Widera B. Thermal Science and Engineering Progress, 2020, 16, 100460.
42 Franco B A, Baptista P, Neto R C, et al. Applied Energy, 2021, 286, 116553.
43 Faye O, Szpunar J, Eduok U. International Journal of Hydrogen Energy, 2022, 47, 13771.
44 PosHYdon. https://poshydon.com/en/home-en/.
45 Service R F. Science, 2018, 361(6398), 120.
46 Modisha P M, Ouma C N M, Garidzirai R, et al. Energy & Fuels, 2019, 33(4), 2778.
47 Chen Y F, Wang Z H, Liu R H, et al. Journal of Ocean Technology, 2024, 43(3), 107 (in Chinese).
陈严飞, 王志浩, 刘瑞昊, 等. 海洋技术学报, 2024, 43(3), 107.
48 Cao J W, Qin X F, Geng G, et al. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6), 1461 (in Chinese).
曹军文, 覃祥富, 耿嘎, 等. 石油学报(石油加工), 2021, 37(6), 1461.
49 Drexler E S, Amaro R L, Slifka A J, et al. Journal of Pressure Vessel Technology, 2018, 140, 061702.
50 Pu L, Yu H S, Dai M H, et al. Chinese Science Bulletin, 2022, 67(19), 2172 (in Chinese).
蒲亮, 余海帅, 代明昊, 等. 科学通报, 2022, 67(19), 2172.
51 Amaro R L, Drexler E S, Slifka A J. International Journal of Fatigue, 2014, 62, 249.
52 Meng B, Gu C H, Zhang L, et al. International Journal of Hydrogen Energy, 2017, 42(11), 7404.
53 Somerday B P, Sofronis P, Nibur K A, et al. Acta Materialia, 2013, 61(16), 6153.
54 Komoda R, Yamada K, Kubota M, et al. International Journal of Hydrogen Energy, 2019, 44(54), 29007.
55 Michler T, Yukhimchuk A A, Naumann J. Corrosion Science, 2008, 50(12), 3519.
56 Amaro R L, Rustagi N, Findley K O, et al. International Journal of Fatigue, 2014, 59, 262.
57 Shinko T, Henaff G, Halm D, et al. Metallurgical and Materials Tran-sactions A, 2020, 51, 4313.
58 Trautmann A, Mori G, Oberndorfer M, et al. Materials, 2020, 13, 3604.
59 Matsunaga H, Yoshikawa M, Kondo R, et al. International Journal of Hydrogen Energy, 2015, 40, 5739.
60 GB/T 15970. 1-2018. 金属和合金的腐蚀 应力腐蚀试验 第1部分:试验方法总则, 2018.
61 Qian S, Cheng Y F. Journal of Pipeline Science and Engineering, 2022, 2, 71.
62 Sun Y H, Cheng Y F. International Journal of Hydrogen Energy, 2021, 46(69), 34469.
63 Zhang T Y, Chu W Y, Xiao J M. Scientia Sinica (Mathematica), 1986(3), 316 (in Chinese).
张统一, 褚武扬, 肖纪美. 中国科学(A辑), 1986(3), 316.
64 Silverstein R, Eliezer D, Tal-Gutelmacher E. Journal of Alloys and Compounds, 2018, 747, 511.
65 Liou H Y, Shieh R I, Wei F I, et al. Corrosion, 1993, 49(5), 389.
66 Saleh A A, Hejazi D, Gazder A A, et al. International Journal of Hydrogen Energy, 2016, 41, 12424.
67 Mohtadi-Bonab M A, Szpunar J A, Basu R, et al. International Journal of Hydrogen Energy, 2015, 40, 1096.
68 Qu S P, Yin Y S. Materials Science and Technology, 2019, 27(1), 1 (in Chinese).
屈少鹏, 尹衍升. 材料科学与工艺, 2019, 27(1), 1.
69 Qu S P, Cheng B Z, Dong L H, et al. Acta Metallurgica Sinica, 2018, 54(8), 1094 (in Chinese).
屈少鹏, 程柏璋, 董丽华, 等. 金属学报, 2018, 54(8), 1094.
70 Herms E, Olive J M, Puiggali M. Materials Science and Engineering A, 1999, 272(2), 279.
71 Duranty E R, Roosendaal T J, Pitman S G, et al. Review of Scientific Instruments, 2017, 88, 095114.
72 Yamabe J, Nishimura S, Koga A. SAE International Journal of Materials and Manufacturing, 2009, 2(1), 452.
73 Nishimura S. Nippon Gomu Kyokaishi, 2013, 86(12), 360.
74 Cheng Y F. International Journal of Hydrogen Energy, 2007, 32, 1269.
75 Zhou C, Wang H, Ou-Yang L Z, et al. Materials Reports, 2019, 33(1), 117 (in Chinese).
周超, 王辉, 欧阳柳章, 等. 材料导报, 2019, 33(1), 117.
76 Tsiklios C, Hermesmann M, Muller T E. Applied Energy, 2022, 327, 120097.
77 Zhang X M, Wang Q G, Zhang X R, et al. China Plastics, 2023, 37(12), 70 (in Chinese).
张学敏, 王庆岗, 张雪茹, 等. 中国塑料, 2023, 37(12), 70.
78 Azeem M, Ya H H, Alam M A, et al. Journal of Energy Storage, 2022, 49, 103468.
79 Li D M, Gangloff R P, Scully J R. Metallurgical and Materials Transactions A, 2004, 35, 849.
80 Ronnebro E C E, Oelrich R L, Gates R O. Molecules, 2022, 27, 6528.
81 Hui J, Ren P G, Sun Z F, et al. Composite Interfaces, 2017, 24(8), 729.
82 Gaska K, Kadar R, Rybak A, et al. Polymers, 2017, 9(7), 294.
83 Qiu Y N, Yang H, Tong L G, et al. Metals, 2021, 11, 1101.
84 Park W S, Yoo S W, Kim M H, et al. Materials and Design, 2010, 31, 3630.
85 Zheng C S, Yu W W. Materials Science and Engineering: A, 2018, 710(5), 359.
86 Zhang M X, Kelly P M. Journal of Materials Science, 2002, 37, 3603.
87 Perlade A, Bouaziz O, Furnemont Q. Materials Science and Engineering A, 2003, 356(1-2), 145.
88 T/CATSI 05007-2023. 移动式真空绝热液氢压力容器专项技术要求, 2023.
89 Manwatkar S K, Sunil M, Prabhu A, et al. Transactions of the Indian Institute of Metals, 2019, 72, 1515.
90 Qu S S, Tan Y, Li W, et al. Shandong Chemical Industry, 2022, 51(20), 106 (in Chinese).
屈莎莎, 谭粤, 李蔚, 等. 山东化工, 2022, 51(20), 106.
91 Nayan N, Murty S V S N, Jha A K, et al. Materials and Design, 2014, 58, 445.
92 Yuri T, Ogata T, Saito M, et al. Cryogenics, 2001, 41, 475.
93 Lu Z C, Zhang X H, Ji W, et al. Materials Science and Engineering A, 2021, 818, 141380.
94 Hwang J S, Kim J H, Kim S K, et al. International Journal of Hydrogen Energy, 2020, 45, 9149.
95 Gomez A, Smith H. Aerospace Science and Technology, 2019, 95, 105438.
96 O’Gara J, Sangid M D. Composites Science and Technology, 2023, 232, 109864.
97 Bao J W, Zhong X Y, Zhang D J, et al. Journal of Materials Engineering, 2020, 48(8), 33 (in Chinese).
包建文, 钟翔屿, 张代军, 等. 材料工程, 2020, 48(8), 33.
98 Aziz M. Energies, 2021, 14, 5917.
99 Wolf J. MRS Bulletin, 2002, 27(9), 684.
100 Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage, 2004.
101 Zuttel A. Materials Today, 2003, 6(9), 24.
102 Park S, Lee C, Chung S, et al. Energies, 2024, 17, 4415.
103 Liu J J, Ma Y, Yang J G, et al. Frontiers in Chemistry, 2022, 10, 945208.
104 Kalibek M R, Ospanova A D, Suleimenova B, et al. Discover Nano, 2024, 19, 195.
105 Akunets A A, Basov N G, Bushuev V S, et al. International Journal of Hydrogen Energy, 1994, 19(8), 697.
106 Sabitu S T, Goudy A J. Metals, 2012, 2, 219.
107 Zhou C S, Fang Z G Z, Sun P. Journal of Power Sources, 2015, 278(15), 38.
108 Xu Y H, Zhou Y, Li Y T, et al. Molecules, 2024, 29, 1767.
109 Chen N, Qu S P, Li Y, et al. Journal of Applied Physics, 2010, 107, 09E123.
110 Turk A, Pu S D, Bombac D, et al. Acta Materialia, 2020, 197, 253.
111 Li L F, Song B, Cai Z Y, et al. Materials Science and Engineering A, 2019, 742, 712.
112 Yoo J, Jo M C, Kim D W, et al. Acta Materialia, 2020, 196, 370.
113 Du Y, Gao X H, Lan L Y, et al. International Journal of Hydrogen Energy, 2019, 44, 32292.
114 Wan H X, Min W L, Song D D, et al. Materials Chemistry and Physics, 2024, 328, 130028.
115 Zhu Y Q, Song W, Li Y X, et al. Surface Technology, 2022, 51(11), 126 (in Chinese).
朱永强, 宋维, 李雨霞, 等. 表面技术, 2022, 51(11), 126.
116 An T, Li S J, Qu J L, et al. International Journal of Fatigue, 2019, 129, 105235.
117 Wang Y F, Wu X P, Zhou Z L, et al. Results in Physics, 2018, 11, 5.
118 Wei F G, Tsuzaki K. Metallurgical and Materials Transactions A, 2006, 37A, 331.
119 Li W G, Wu W J, Yang Z X, et al. Corrosion Science, 2024, 233, 112086.
[1] 杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金疲劳裂纹扩展行为影响[J]. 材料导报, 2025, 39(14): 24080102-5.
[2] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[3] 申昕, 徐玉平, 吕一鸣, 周海山, 罗广南. 液态锂铅与阻氚涂层材料相容性的研究进展[J]. 材料导报, 2023, 37(1): 21060272-8.
[4] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[5] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[6] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[7] 闫二虎, 黄浩然, 刘贵仲, 班煜峰, 徐芬, 孙立贤. 一种氢渗透模型的构建及其在Nb基渗氢合金中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 725-729.
[8] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[9] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
[10] YANG Hao, LI Tai, ZHANG Guangxin, LYU Guoqiang, CHEN Xiuhua. Research Progress on Preparation Methods and Defect Control of Silicon Carbide Single Crystal[J]. Materials Reports, 2026, 40(2): 24100235 -13 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed