Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120228-8    https://doi.org/10.11896/cldb.24120228
  金属与金属基复合材料 |
基于APSO-Stacking集成模型的铜锍品位预测
李林波1,*, 刘子杨1, 张叶新2,*, 杨建军1, 段中兴3, 王昭峰1
1 西安建筑科技大学冶金工程学院,西安 710055
2 国投金城冶金有限责任公司,河南 灵宝 472500
3 西安建筑科技大学信息与控制工程学院,西安 710055
Copper Matte Grade Prediction Based on APSO-Stacking Integrated Model
LI Linbo1,*, LIU Ziyang1, ZHANG Yexin2,*, YANG Jianjun1, DUAN Zhongxing3, WANG Zhaofeng1
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 SDIC Jincheng Metallurgical Co., Ltd., Lingbao 472500, Henan, China
3 School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 11930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜锍是造锍熔炼和粗铜生产的主要产物及关键原料,其品位精准预测对熔炼工艺优化至关重要。针对传统模型预测效果欠佳的问题,提出一种优化集成预测方法。通过箱型图与拉格朗日插值法对原始工艺数据进行预处理,并结合灰色关联分析(GRA)与皮尔逊相关系数(Pearson)筛选高相关性特征构建数据集。以随机森林(RF)和支持向量机(SVM)为基学习器,以简单线性回归(LR)为元学习器,结合自适应优化粒子群算法(APSO)和5折交叉验证,构建较高精度且具备抗过拟合能力的预测模型,并借助FactSage7.1对预测趋势进行了验证。结果表明,该模型预测趋势与理论计算高度一致,相较于单一模型,在铜锍品位预测方面表现出显著优势,其MSE、MAE、MAPE分别为0.737 1、0.631 2、0.913 6,预测精度更高,可为铜锍品位控制及熔炼工艺优化提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李林波
刘子杨
张叶新
杨建军
段中兴
王昭峰
关键词:  铜锍品位  自适应算法  集成模型  灰色关联分析  皮尔逊相关系数    
Abstract: Copper matte is the main product and key raw material of matte smelting and crude copper production. Accurate prediction of copper matte grade is crucial to the optimization of smelting process. Aiming at the problem of poor prediction effect of traditional models, an optimized integrated prediction method is proposed. The original process datais preprocessed by box plot and Lagrange interpolation method, and the data set is constructed by combining grey correlation analysis (GRA) and Pearson correlation coefficient (Pearson) to screen high correlation features. In this work, RF and SVM are used as base learners, and LR is used as meta-learner. Combined with adaptive particle swarm optimization (APSO) and 5-fold cross-validation, a prediction model with high accuracy and anti-overfitting ability is constructed, and the prediction trend is verified by FactSage7.1. The results show that the prediction trend of the model is highly consistent with the theoretical calculation. Compared with the single models, it shows significant advantages in the prediction of copper matte grade. The MSE, MAE, and MAPE are 0.737 1, 0.631 2, and 0.913 6, respectively, which shows higher prediction accuracy and provides reference for copper matte grade control and smelting process optimization.
Key words:  copper matte grade    adaptive algorithm    integrated model    grey correlation analysis    Pearson correlation coefficient
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TP183  
  TF811  
基金资助: 国投金城冶金揭榜挂帅项目(JCYJ202310133HT);国家自然科学基金区域创新发展联合基金(U22A20175)
通讯作者:  *李林波,博士,教授。主要研究领域为冶金新工艺及理论研究、电化学冶金、冶金过程计算。yj-lilinbo@xauat.edu.cn;
张叶新,中级工程师、国投金城冶金有限责任公司研发中心主任。主要研究领域为有色金属冶炼、冶金过程固废处理等。13589452016@139.com   
引用本文:    
李林波, 刘子杨, 张叶新, 杨建军, 段中兴, 王昭峰. 基于APSO-Stacking集成模型的铜锍品位预测[J]. 材料导报, 2026, 40(2): 24120228-8.
LI Linbo, LIU Ziyang, ZHANG Yexin, YANG Jianjun, DUAN Zhongxing, WANG Zhaofeng. Copper Matte Grade Prediction Based on APSO-Stacking Integrated Model. Materials Reports, 2026, 40(2): 24120228-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120228  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120228
1 Wang L, Liu D W, Wang H, et al. Nonferrous Metals (Mineral Processing Section), 2024(9), 87(in Chinese).
王亮, 刘殿文, 王涵, 等. 有色金属(选矿部分), 2024(9), 87.
2 Liu Q F, Liao Y L, Wu Y, et al. Chemical Industry and Engineering Progress, 2022, 41(11), 6099(in Chinese).
刘庆丰, 廖亚龙, 吴越, 等. 化工进展, 2022, 41(11), 6099.
3 Wang B R, Yang H Y, Jin Z N, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(3), 908(in Chinese).
王保仁, 杨洪英, 金哲男, 等. 中国有色金属学报, 2024, 34(3), 908.
4 Xia L X, Yang J, Wang W, et al. Yunnan Metallurgy, 2022, 51(6), 67(in Chinese).
夏立新, 杨佳, 王薇, 等. 云南冶金, 2022, 51(6), 67.
5 Wang J M, Gu M Y, Liu G H, et al. Chemical Industry and Engineering Progress, 2016, 35(5), 1303(in Chinese).
王计敏, 顾明言, 刘国华, 等. 化工进展, 2016, 35(5), 1303.
6 Yang H W, Wang Z K, Nan J F, et al. Nonferrous Metals (Extractive Metallurgy), 2020(7), 26(in Chinese).
杨宏伟, 王占柯, 南君芳, 等. 有色金属(冶炼部分), 2020(7), 26.
7 Zhang H B, Du W Z, Li L B, et al. Nonferrous Metals (Extractive Metallurgy), 2022(2), 34(in Chinese).
张宏斌, 杜武钊, 李林波, 等. 有色金属(冶炼部分), 2022(2), 34.
8 Li L B, Liu Z Y, Yang J J, et al. Nonferrous Metals Engineering, 2024, 14(11), 108(in Chinese).
李林波, 刘子杨, 杨建军, 等. 有色金属工程, 2024, 14(11), 108.
9 Ma H, Li Z, Shu B, et al. Metals, 2024, 14(8), 916.
10 Liu X J, Wen L Y X, Zhang Y J, et al. China Metallurgy, 2024, 34(2), 83(in Chinese).
刘小杰, 温梁亦欣, 张玉洁, 等. 中国冶金, 2024, 34(2), 83.
11 Li T, Gu W, Gao W, et al. JOM, DOI:10.1007/S11837-024-06886-8.
12 Zhang X Z. Ultra-high-cycle fatigue life prediction of metallic mate rials based on machine learning. Master’s Thesis, Wuhan Textile University, China, 2023 (in Chinese).
张旭泽. 基于机器学习的金属材料超高周疲劳寿命预测. 硕士学位论文, 武汉纺织大学, 2023.
13 Qiu G X, Cai M C, Zhang Y, et al. Materials Reports, 2024, 38(20), 256(in Chinese).
邱国兴, 蔡明冲, 张毅, 等. 材料导报, 2024, 38(20), 256.
14 Tan P, Cao P. Journal of Central South University (Science and Technology), 2012, 43(2), 632(in Chinese).
谭鹏, 曹平. 中南大学学报(自然科学版), 2012, 43(2), 632.
15 Chen P, Ma X M, Xiang J J, et al. Coal Engineering, 2024, 56(7), 127(in Chinese).
陈攀, 马鑫民, 向俊杰, 等. 煤炭工程, 2024, 56(7), 127.
16 Wang J H, Fang Q, Wang J H, et al. Iron & Steel, 2024, 59(3), 79(in Chinese).
王健豪, 方庆, 王家辉, 等. 钢铁, 2024, 59(3), 79.
17 Deepthi Y P, Kalaga P, Sahu S K, et al. International Journal on Inte-ractive Design and Manufacturing (IJIDeM), DOI:10.1007/S12008-024-02032-5.
18 Lee C W, Woo S, Kim J. Journal of Materials Engineering and Perfor-mance, DOI:10.1007/S11665-024-10195-1.
19 Li M, Wang H, Chen Z, et al. Science of the Total Environment, 2024, 957, 177448.
20 Li H L, Lin M K, Wang Q C. Journal of Highway and Transportation Research and Development, 2019, 36(12), 8(in Chinese).
李海莲, 林梦凯, 王起才. 公路交通科技, 2019, 36(12), 8.
21 Jin J S. Metal Mine, 2024(6), 252(in Chinese).
金家胜. 金属矿山, 2024(6), 252.
22 Wang H B. Research of learning methods on Single-class support vector machine. Ph D. Thesis, Zhejiang University, China, 2023 (in Chinese).
王洪波. 单分类支持向量机的学习方法研究. 博士学位论文, 浙江大学, 2012.
23 Cheng G, Chen J, He L. Coal Technology, 2023, 42(10), 12(in Chinese).
程刚, 陈杰, 何磊. 煤炭技术, 2023, 42(10), 12.
24 Li H L, Yang S Y, Q Z T, et al. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(8), 10(in Chinese).
李海莲, 杨斯媛, 祁增涛, 等. 重庆交通大学学报(自然科学版), 2024, 43(8), 10.
25 Andreas V, Eric L, Lina R, et al. Applied Thermal Engineering, 2023, 227, 120336.
26 Liu H B, Jian H R. Yellow River, 2024, 46(11), 74(in Chinese).
刘洪波, 菅浩然. 人民黄河, 2024, 46(11), 74.
27 Dong Q, Li J W, Gu X Y, et al. China Journal of Highway and Transport, 2023, 36(12), 236(in Chinese).
董侨, 李家旺, 顾兴宇, 等. 中国公路学报, 2023, 36(12), 236.
28 Jiang J W, Zhao J B, Liu W J, et al. Shandong Science, 2023, 36(5), 75(in Chinese).
姜嘉伟, 赵金宝, 刘文静, 等. 山东科学, 2023, 36(5), 75.
29 Chen Z Y, Tan H Z, Cheng S Y, et al. Thermal Power Generation, 2023, 52 (7), 64(in Chinese).
陈植元, 谭厚章, 成思扬, 等. 热力发电, 2023, 52 (7), 64.
[1] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[2] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[3] 罗祥, 王玲, 王振地. 引气剂起泡和稳泡能力的温度敏感性研究[J]. 材料导报, 2023, 37(18): 22030209-8.
[4] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[5] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed