Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120017-11    https://doi.org/10.11896/cldb.24120017
  无机非金属及其复合材料 |
碳空位对过渡金属碳化物陶瓷性能的调控研究综述
胡鹏飞*, 林杰, 杨嘉辛, 姜云, 谢忱
上海大学材料科学与工程学院,上海大学分析测试中心,上海 200444
A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies
HU Pengfei*, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen
Instrumental Analysis and Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 22699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳空位过渡族金属碳化物陶瓷,也称非化学计量比过渡族金属碳化物陶瓷,是一种基于过渡族金属碳化物制备而成的陶瓷材料。这种材料的制备涉及对内部碳含量的精确控制,通过有意降低碳元素与理想化学计量比的比例,引发碳空位的形成。这种碳空位的形成会对陶瓷的物理和化学性能产生显著影响。与传统的陶瓷相比,这类材料主要采用二元过渡族金属碳化物或高熵碳化物陶瓷作为基础,碳空位的引入对于材料的多项性能都有显著影响,包括增强韧性和塑性、降低热导率、提高致密度等。此外,碳空位的存在还会在增强相稳定性、降低烧结温度、提升抗氧化能力等方面发挥作用。在功能材料领域,碳空位的引入增强了材料的储氢性能和催化性能。由于出色的结构和功能特性,碳空位陶瓷材料在航空航天、核工业以及其他需要高温耐热、抗氧化和优异力学性能的工业制造领域显示出巨大的应用潜力和前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡鹏飞
林杰
杨嘉辛
姜云
谢忱
关键词:  碳空位  碳化物陶瓷  性能调控  高熵碳化物  功能材料    
Abstract: Carbon vacancy transition metal carbide ceramics, also known as non-stoichiometric transition metal carbide ceramics, is a type of ceramic material derived from transition metal carbides. The preparation of this material involves precise controlling of the internal carbon content, intentionally reducing the ratio of carbon to the ideal stoichiometric proportion, which induces the formation of carbon vacancies. The formation of these vacancies has a significant impact on the physical and chemical properties of the ceramics. Compared to traditional ceramics, this type of material mainly uses binary transition metal carbides or high-entropy carbide ceramics as the base. The introduction of carbon vacancies significantly affects several material properties, including enhanced toughness and plasticity, reduced thermal conductivity, and improved density. In addition, the presence of carbon vacancies also plays a role in enhancing phase stability, reducing sintering temperatures, and improving oxidation resistance. In the field of functional materials, the introduction of carbon vacancies enhances the material's hydrogen storage and catalytic performance. Due to their outstanding structural and functional characteristics, these materials exhibit great potential and prospects in aerospace, nuclear industries, and industrial manufacturing fields that require high-temperature resistance, oxidation resistance, and excellent mechanical properties.
Key words:  carbon vacancy    carbide ceramics    property regulation    high-entropy carbides    functional material
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TQ174  
基金资助: 上海市科委(20010500200)
通讯作者:  * 胡鹏飞,上海大学材料学院高级实验师。主要研究方向为纳米功能材料、C/C复合材料致密热防护涂层。hpf-hqx@shu.edu.cn   
引用本文:    
胡鹏飞, 林杰, 杨嘉辛, 姜云, 谢忱. 碳空位对过渡金属碳化物陶瓷性能的调控研究综述[J]. 材料导报, 2026, 40(1): 24120017-11.
HU Pengfei, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen. A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies. Materials Reports, 2026, 40(1): 24120017-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120017  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120017
1 Rost C M, Borman T, Hossain M D, et al. Acta Materialia, 2020, 196, 231.
2 Pang J, Sun J, Zheng M, et al. Applied Catalysis B: Environmental, 2019, 254, 510.
3 Kaner R B, Gilman J J, Tolbert S H. Science, 2005, 308(5726), 1268.
4 Pierson H O. Handbook of refractory carbides and nitrides, Noyes publication, New York, USA, 1996, pp. 16.
5 Fahrenholtz W G, Hilmas G E. Scripta Materialia, 2016, 94, 6.
6 Weinberger C R, Thompson G B. Journal of the American Ceramic Society, 2018, 101(10), 4401.
7 Guo S Q. Journal of the European Ceramic Society, 2009, 29(6), 995.
8 Li M X. Study on the synthesis of nano-carbide materials by sol-gel precursor method. Master's Thesis, Xiangtan University, China, 2008 (in Chinese).
黎茂祥. 溶胶-凝胶先驱体法制备纳米碳化物材料研究. 硕士学位论文, 湘潭大学, 2008.
9 Jin Z H. Gao J Q, Qiao G J. Engineering ceramic materials, Xi'an Jiaotong University Press, China, 2000, pp. 26 (in Chinese).
金志浩, 高积强, 乔冠军. 工程陶瓷材料, 西安交通大学出版社, 2000, pp. 26.
10 Qiao L, Wang M, Liu M, et al. Ceramics International, 2015, 41(9, Part A), 11341.
11 Oh H S, Kim S J, Odbadrakh K, et al. Nature Communications, 2019, 10, 1.
12 Gild J, Zhang Y, Harrington T, et al. Scientific Reports, 2016, 6(1), 37946.
13 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2018, 166, 280.
14 Adbm, Bonsa. Acta Materialia, 2017, 122, 448.
15 Sarker P, Harrington T, Toher C, et al. Nature Communications, 2018, 9(1), 4980.
16 Chen L, Wang K, Su W T, et al. Journal of Inorganic Materials, 2020, 35(7), 748 (in Chinese).
陈磊, 王恺, 苏文韬, 等. 无机材料学报, 2020, 35(7), 748.
17 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6, 8485.
18 Christina M R. Entropy-stabilized oxides: explorations of a novel class of multicomponent materials. Ph. D. Thesis, North Carolina State University, USA, 2016.
19 Xue L Y, Loic C, Bai L Y. Journal of the American Ceramic Society, 2018, 101(10), 4486.
20 Ye B, Wen T, Nguyen M C, et al. Acta Materialia, 2019, 170, 15.
21 Tan H, Yong Q C, Chen L, et al. Journal of Alloys and Compounds, 2019, 816, 152523.
22 Wang M J, Yichen R. Scripta Materialia, 2021, 193(1), 86.
23 Luo S C, Guo W M, Fang Z L, et al. Journal of the European Ceramic Society, 2022, 42(2), 336.
24 Castle E, Csanádi T, Grasso S, et al. Scientific Reports, 2018, 8(1), 8609.
25 Han X, Girman V, Sedlak R, et al. Journal of the Europrean Ceramic Society, 2020, 40(7), 2709.
26 Sun Y, Xiang H, Dai F Z, et al. Journal of Advanced Ceramics, 2021, 10(3), 596.
27 Zhang B H, Wang Y W, Yin J, et al. Journal of Materials Science and Technology, 2023, 164, 205.
28 He Y, Peng C, Xin S, et al. Journal of Materials Science, 2020, 55(16), 6754.
29 Malinovskis P, Fritze S, Riekehr L, et al. Materials and Design, 2018, 149, 51.
30 Zhang Y, Liu B, Wang J, et al. Acta Materialia, 2016, 111, 232.
31 Kostenko M G, Li J, Zeng Z, et al. Journal of Alloys and Compounds, 2022, 891, 162063.
32 Zhao S. Journal of the American Ceramic Society, 2021, 104(4), 1874.
33 Zhong Y, Sabarou H, Yan X, et al. Materials and Design, 2019, 182, 108060.
34 Hu W, Xiang J, Zhang Y, et al. Journal of Materials Research, 2012, 27(9), 1230.
35 Meng H, Chu Y. Journal of the American Ceramic Society, 2022, 105(9), 5835.
36 Li J, Zhou Y, Su Y, et al. Journal of Advanced Ceramics, 2023, 12(2), 242.
37 Wang Y, Csanádi T, Fogarassy Z, et al. Journal of the European Ceramic Society, 2022, 42(13), 5273.
38 Biesuz M, Saunders T G, Veverka J, et al. Scripta Materialia, 2021, 203, 114091.
39 Liu D, Hou Y, Meng J, et al. Journal of the European Ceramic Society, 2022, 42(13), 5262.
40 Song J, Chen G, Xiang H, et al. Journal of Materials Science and Technology, 2022, 121, 181.
41 Zhang W, Chen L, Lu W, et al. Journal of the European Ceramic Society, 2022, 42(14), 6347.
42 Hossain M D, Borman T, Kumar A, et al. Acta Materialia, 2021, 215, 117051.
43 Vasanthakumar K, Bakshi S R. Ceramics International, 2018, 44(1), 484.
44 Li J, Chen S, Fan H, et al. Journal of the American Ceramic Society, 2024, 107(4), 2750.
45 Luo X, Yang X, Weng Y, et al. Journal of Alloys and Compounds, 2023, 965, 171484.
46 Wen Z, Tang Z, Liu Y, et al. Advanced Materials, 2024, 36(14), 2311870.
47 Qin Y, Wei X F, Liu J X, et al. Advances in Applied Ceramics, 2023, 122(5-8), 259.
48 Zhou Y, Fahrenholtz W G, Graham J, et al. Journal of Materials Science and Technology, 2021, 82, 105.
49 Chen H, Zhao Z, Xiang H, et al. Journal of Materials Science and Technology, 2020, 48, 57.
50 Chen H, Xiang H, Dai F Z, et al. Journal of Materials Science and Technology, 2019, 35(8), 1700.
51 Chen L, Zhang W, Lu W, et al. Journal of Advanced Ceramics, 2023, 12(1), 49.
52 Liu B, Zhao J, Liu Y, et al. Journal of Materials Science and Technology, 2021, 88, 143.
53 Dai F Z, Wen B, Sun Y, et al. Journal of Materials Science and Technology, 2020, 43, 168.
54 Rempel A A, Würschum R, Schaefer H E. Physical Review B, 2000, 61(9), 5945.
55 Ding H, Fan X, Chu K, et al. Journal of the European Ceramic Society, 2014, 34(7), 1893.
56 Yu X X, Thompson G B, Weinberger C R. Journal of the European Ceramic Society, 2015, 35(1), 95.
57 Ouyang Y, Xiong M, Lin K, et al. Calphad, 2024, 85, 102680.
58 Kostenko M G, Gusev A I, Lukoyanov A V. International Journal of Refractory Metals and Hard Materials, 2023, 110, 106005.
59 Xiang J, Hu W, Liu S, et al. Materials Chemistry and Physics, 2011, 130(1), 352.
60 Lin Y, Chong X, Gan M, et al. Ceramics International, 2023, 49(13), 22518.
61 Moisy-Maurice V, Lorenzelli N, De Novion C H, et al. Acta Metallurgica, 1982, 30(9), 1769.
62 Dang F Z. Preparation and properties of high entropy transition metal carbides. Master's Thesis, Shaanxi University of Science and Technology, China, 2022 (in Chinese).
党锋珍. 高熵过渡金属碳化物的制备及其性能研究. 硕士学位论文, 陕西科技大学, 2022.
63 Zhang C, Gupta A, Seal S, et al. Journal of the American Ceramic Society, 2017, 100(5), 1853.
64 Jung J, Kang S. Scripta Materialia, 2007, 56(7), 561.
65 Kurbatkina V V, Patsera E I, Levashov E A, et al. Advanced Engineering Materials, 2017, 20(8), 1701075.
66 Cabrero J, Audubert F, Pailler R. Journal of the European Ceramic Society, 2011, 31(3), 313.
67 Zhang X, Hilmas G E, Fahrenholtz W G, et al. Journal of the American Ceramic Society, 2010, 90(2), 393.
68 Roeder E, Hornstra J. Journal of the American Ceramic Society, 1968, 51(4), 224.
69 Gui K X, Liu F Y, Zhu F W, et al. Journal of Synthetic Crystals, 2018, 47(8), 6(in Chinese).
桂凯旋, 刘方瑜, 祝夫文, 等. 人工晶体学报, 2018, 47(8), 6.
70 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751.
71 Mann J B, Meek T L, Knight E T, et al. Journal of the American Chemical Society, 2000, 122(21), 5132.
72 Peng C, Tang H, He Y, et al. Journal of Materials Science and Technology, 2020, 51, 161.
73 Razumovskiy V I, Ruban A V, Odqvist J, et al. Calphad, 2014, 46, 87.
74 Lin G, Liu J, Qin Y, et al. Journal of the American Ceramic Society, 2022, 105(4), 2392.
75 Vasanthakumar K, Revathi G, Ariharan S, et al. Journal of the European Ceramic Society, 2021, 41(13), 6756.
76 Wei B, Chen L, Wang Y, et al. Journal of the European Ceramic Society, 2018, 38(2), 411.
77 Wang X G, Guo W M, Kan Y M, et al. Journal of the European Ceramic Society, 2011, 31(6), 1103.
78 Zhang W, Li K, Chen L, et al. Journal of the European Ceramic Society, 2024, 44(3), 1396.
79 Balasubramanian K, Khare S, Gall D. Acta Materialia, 2018, 159, 77.
80 Niu H, Chen X Q, Liu P, et al. Scientific Reports, 2012, 2(2), 718.
81 Mei A B, Kindlund H, Broitman E, et al. Acta Materialia, 2020, 192, 78.
82 Thompson R P, Clegg W J. Current Opinion in Solid State and Materials Science, 2018, 22(3), 100.
83 Li J, Zhang Q, Chen S, et al. Materials and Design, 2023, 226, 111680.
84 Porz L, Klomp A J, Fang X, et al. Materials Horizons, 2021, 8(5), 1528.
85 Tan Y, Liao W, Teng Z, et al. Journal of the American Ceramic Society, 2024, 107(4), 2565.
86 Li X, Xiang J, Hu W. Materials Characterization, 2014, 90, 94.
87 Hu W, Liu S, Wen B, et al. Journal of Applied Crystallography, 2013, 46(1), 43.
88 Gu Y, Xiang Y, Srolovitz D J, et al. Scripta Materialia, 2018, 155, 155.
89 McFadden G B, Boettinger W J, Mishin Y. Acta Materialia, 2020, 185, 66.
90 Gusev A I, Zyryanova A N. Physica Status Solidi, 2000, 177(2), 419.
91 Riedl H, Glechner T, Wojcik T, et al. Scripta Materialia, 2018, 149, 150.
92 Sangiovanni D G, Tasnádi F, Harrington T, et al. Materials and Design, 2021, 204, 109634.
93 Jordan R E. Handbook of refractory compounds, Plenum Press, New York, 1980, pp. 8.
94 Radosevich L G, Williams W S. Journal of the American Ceramic Society, 1970, 53(1), 30.
95 Zhou Y, Fahrenholtz W G, Graham J, et al. Journal of the American Ceramic Society, 2021, 104(9), 4708.
96 Li J, Fan H, Zhang Q, et al. Ceramics International, 2024, 50(6), 9926.
97 Kuriakose N, Mohan T A, Ghosh P. Surface Science, 2021, 706, 121798.
98 Stotts J C, Salehin R, Bakst I N, et al. International Journal of Hydrogen Energy, 2024, 50, 5123.
99 Gringoz A, Glandut N, Valette S. Electrochemistry Communications, 2009, 11(10), 2044.
100 Wei B, Wang Y, Zhang H, et al. Materials Letters, 2018, 228, 254.
[1] 侯学清, 王燚婧, 尚光富, 王环江, 何淑花. 基于芘的双席夫碱荧光探针的合成及Zn2+识别研究[J]. 材料导报, 2025, 39(5): 23090108-6.
[2] 张海虎, 呙润华, 钱劲松. 蓄盐材料、蓄盐沥青混合料性能的研究进展[J]. 材料导报, 2025, 39(16): 24060219-14.
[3] 李亚南, 王凯, 刘得军, 谭志良. MXene基复合材料在电磁屏蔽领域的研究进展[J]. 材料导报, 2025, 39(14): 24080149-11.
[4] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[5] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[6] 付华, 陈慧媛, 宋维君, 赵云. 一种新型的用于萃取铷的冠醚功能化磁性固相纳米材料[J]. 材料导报, 2024, 38(17): 22070038-6.
[7] 曾剑涛, 王勇, 江国权, 张元祥. 柔性三维力传感器的研究进展[J]. 材料导报, 2024, 38(15): 23100147-11.
[8] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[9] 吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
[10] 马衍轩, 宋晓辉, 于霞, 吴睿, 付双阳, 葛亚杰, 朱鹏飞, 张建, 吴磊. 海工钢筋环氧涂层的多尺度结构设计与防护性能调控研究进展[J]. 材料导报, 2023, 37(24): 22050047-13.
[11] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[12] 刘国齐, 李红霞, 杨文刚, 钱凡, 李勇. 镁铝尖晶石原位生成及其对耐火材料结构、性能的影响[J]. 材料导报, 2023, 37(20): 22040125-5.
[13] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[14] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[15] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[3] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[4] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[6] . Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet[J]. Materials Reports, 2017, 31(4): 60 -64 .
[7] ZHAO Zhengyang, SUN Mingyue, SUN Jianliang. Study on Hot Deformation Behavior and Hot Processing Map of H13 Steel Containing Rare Rarth[J]. Materials Reports, 2017, 31(8): 149 -155 .
[8] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[9] REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells[J]. Materials Reports, 2017, 31(17): 133 -137 .
[10] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed