Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24100030-5    https://doi.org/10.11896/cldb.24100030
  金属与金属基复合材料 |
触变成形Mg-5Sn-3Bi-2Cu合金微观组织与力学性能研究
孟帅举1,2,3,*, 王孟璐1, 杜慈威1, 归金琪1, 杨贵荣1, 余海存1,*, 毕广利1, 陈体军1, 曹驰2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学温州泵阀工程研究院,浙江 温州 325000
3 中信戴卡股份有限公司,河北 秦皇岛 066011
Study on Microstructure and Mechanical Properties of Thixoforged Mg-5Sn-3Bi-2Cu Alloy
MENG Shuaiju1,2,3,*, WANG Menglu1, DU Ciwei1, GUI Jinqi1, YANG Guirong1, YU Haicun1,*, BI Guangli1, CHEN Tijun1, CAO Chi2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Wenzhou Engineering Institute of Pump and Valve, Lanzhou University of Technology, Wenzhou 325000, Zhejiang, China
3 CITIC Dicastal Co., Ltd., Qinhuangdao 066011, Hebei, China
下载:  全 文 ( PDF ) ( 20270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探清触变加工Mg-Sn-Bi系合金显微组织与力学行为特点,综合采用 OM、SEM、XRD、EPMA和室温拉伸试验,对比研究了Mg-5Sn-3Bi-2Cu(TBC532)合金在触变锻造前后的微观组织特征与力学性能变化。结果表明,触变锻造态样品中形成了由近球状粗晶和细小二次凝固组织构成的双峰结构,显著区别于铸态TBC532合金的均匀树枝晶组织。触变锻造态TBC532合金中近球状粗晶体积分数约为60.8%,其平均尺寸及形状因子分别为98.5 μm和1.26;二次凝固组织由平均晶粒尺寸约为4.6 μm的细小等轴树枝晶和连续网状的化合物相(Mg3Bi2、Mg2Sn、Mg2Cu和BiSn)构成,主要均匀分布在球状组织之间,少量分布在近球状晶粒内部。触变锻造态TBC532合金的抗拉强度和延伸率比铸态试样更高,较铸态合金分别提升17.0%与36.1%,分别达到(292.3±5.2) MPa和(14.7±0.3)%,其断裂机制主要为穿晶韧性断裂,这主要归因于触变锻造态TBC532合金中细晶组织的细晶强化作用以及粗、细晶区之间的协同作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟帅举
王孟璐
杜慈威
归金琪
杨贵荣
余海存
毕广利
陈体军
曹驰
关键词:  Mg-Sn-Bi合金  触变加工  混晶结构  强韧化机理    
Abstract: In order to reveal the microstructure and mechanical properties of thixoformed Mg-Sn-Bi alloys, fine-grained Mg-5Sn-3Bi-2Cu (TBC532) alloys were selected for semi-solid thixoforging. The microstructure and mechanical properties of thixoforged TBC532 alloy were studied by OM, SEM, XRD, EPMA and tensile test. The results indicate that a bimodal structure composed of near-spherical coarse grains and fine secon-dary solidification microstructure is formed in the thixoforged TBC532 alloy, significantly different from the equiaxed dendrites in the as-cast sample. The spherical α1-Mg grains account for about 60.8% with average grain size and shape factor of~98.5 μm and 1.26, respectively. The se-condary solidification region is composed of greatly refined α2-Mg with secondary dendrite arm spacing of ~4.6 μm and continuous network-like compound phases including Mg3Bi2, Mg2Sn, Mg2Cu, and BiSn. The secondary solidification region mainly distributed between spherical α1-Mg grains. Besides, there is a small amount of secondary solidification microstructure located inside the spherical α2-Mg grains. Due to the significant grain-boundary strengthening effect from fine α2-Mg grains in the bimodal structure and the synergistic effect between coarse and fine grain regions, the thixoforged TBC532 alloy exhibits superior mechanical properties. The ultimate tensile strength and elongation are (292.3±5.2) MPa and (14.7±0.3)%, respectively, which are 17.0% and 36.1% higher than that of the as-cast sample, respectively. The fracture surface of the thixoforged TBC532 alloy displays transcrystalline and ductile features.
Key words:  Mg-Sn-Bi alloy    thixotropic processing    heterostructure    strengthening and toughening mechanism
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TG146.22  
基金资助: 甘肃省科技重大专项(22ZD6GA008);国家自然科学基金(52265048);中国博士后科学基金(2022M713656);甘肃省青年科技基金计划(21JR7RA261);兰州理工大学红柳优秀青年基金人才支持计划(062205);温州市级科技计划项目(G2023018)
通讯作者:  * 孟帅举,博士,兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室副研究员、硕士研究生导师。目前主要从事结构功能一体化轻质合金与高性能高温合金的成型控性研究工作。shuaijumeng@163.com
余海存,博士,兰州理工大学材料科学与工程学院副教授、硕士研究生导师。甘肃省材料学会青年工作委员会委员。目前主要从事结构功能一体化金属材料的成型控性研究工作。hcyu@lut.edu.cn   
引用本文:    
孟帅举, 王孟璐, 杜慈威, 归金琪, 杨贵荣, 余海存, 毕广利, 陈体军, 曹驰. 触变成形Mg-5Sn-3Bi-2Cu合金微观组织与力学性能研究[J]. 材料导报, 2026, 40(1): 24100030-5.
MENG Shuaiju. Study on Microstructure and Mechanical Properties of Thixoforged Mg-5Sn-3Bi-2Cu Alloy. Materials Reports, 2026, 40(1): 24100030-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100030  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24100030
1 Yin L, Huang H, Yuan G Y, et al. Materials China, 2019, 38(2), 126(in Chinese).
尹林, 黄华, 袁广银, 等. 中国材料进展, 2019, 38(2), 126.
2 Liu L, Yang W, Wu Z K, et al. Materials Reports, 2023, 37(12), 190(in Chinese).
刘灵, 杨伟, 吴宗锴, 等. 材料导报, 2023, 37(12), 190.
3 Meng S J, Xiao H R, Song J L, et al. Journal of Materials Research and Technology, 2024, 30, 9007.
4 Meng S J, Yu H, Cui H W, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(5), 894(in Chinese).
孟帅举, 余晖, 崔红卫, 等. 中国有色金属学报, 2017, 27(5), 894.
5 Meng S J, Song J L, Chen K Y, et al. Rare Metal Materials and Engineering, 2025, 54(12), 3091(in Chinese).
孟帅举, 宋金龙, 陈可意, 等. 稀有金属材料与工程, 2025, 54(12), 3091.
6 Cheng W L, Ma S C, Bai Y, et al. Journal of Alloys and Compounds, 2017, 731, 945.
7 Meng S J, Yu H, Li L H, et al. Journal of Alloys and Compounds, 2020, 834, 155216.
8 Luo Y H, Cheng W L, Han L, et al. Materials Science and Engineering A, 2022, 834, 17(2), 142623.
9 Yang D L, Chen X Y, Liu H R, et al. Journal of Functional Materials, 2024, 55(7), 7038(in Chinese).
杨东来, 陈晓亚, 刘浩锐, 等. 功能材料, 2024, 55(7), 7038.
10 Yuan G Y. Effects of Cu and/or Zn addition on the microstructure, mechanical and corrosion behaviors of Mg, Chongqing University, China, 2018 (in Chinese).
袁光宇. Cu、Zn对Mg微观组织和性能的影响. 硕士学位论文, 重庆大学, 2018.
11 Li A W, Liu J W, Wu C L, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(8), 1487(in Chinese).
李爱文, 刘江文, 伍翠兰, 等. 中国有色金属学报, 2010, 20(8), 1487.
12 Meng S J, Wang M L, Song J L, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(10), 3352(in Chinese).
孟帅举, 王孟璐, 宋金龙, 等. 中国有色金属学报, 2024, 34(10), 3352(in Chinese).
13 Chen G S, Wu G H, Wang Y X, et al. Materials Reports, 2008(7), 99(in Chinese).
陈广森, 吴国华, 王迎新, 等. 材料导报, 2008(7), 99.
14 Huang X F, Wei L L, Yang J Q, et al. Materials Reports, 2020, 34(14), 14116(in Chinese).
黄晓锋, 魏浪浪, 杨剑桥, 等. 材料导报, 2020, 34(14), 14116.
15 Kang Y L, Mao W M, Hu Z Q. Theory and technology of semi-solid processing of metal materials, Science Press, China, 2004, pp. 198(in Chinese).
康永林, 毛卫民, 胡壮麒. 金属材料半固态加工理论与技术, 科学出版社, 2004, pp. 198.
16 Kleiner S, Beffort O, Wahlen A, et al. Journal of Light Metals, 2002, 2(4), 277.
17 Li Y D, Chen T J, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2008(1), 18(in Chinese).
李元东, 陈体军, 马颖, 等. 中国有色金属学报, 2008(1), 18.
18 Lukasz R, Grzegorz G. Journal of Materials Processing Technology, 2019, 264, 352.
19 Huang X F, Zhang Q Q, Ma Y J, et al. Materials Reports, 2019, 33(10), 3441(in Chinese).
黄晓锋, 张乔乔, 马亚杰, 等. 材料导报, 2019, 33(10), 3441.
20 Huang X F, Zhang S, Yang F, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(6), 1561(in Chinese).
黄晓锋, 张胜, 杨凡, 等. 中国有色金属学报, 2022, 32(6), 1561.
21 Yue Q C, Cui J Z, Lu G M, et al. The Chinese Journal of Nonferrous Metals, 2003(6), 1488(in Chinese).
乐启炽, 崔建忠, 路贵民, 等. 中国有色金属学报, 2003(6), 1488.
22 Xu H, Zhang X, Wang C S, et al. Materials Science Forum, 2016, 850(7), 790.
23 Yu Z Y. Mechanical properties and strengthening mechanisms of bimodal microstructural Mg-Al-Zn alloys. Master's Thesis, Jilin University, China, 2019 (in Chinese).
余志远. 混晶结构Mg-Al-Zn合金力学性能及强韧化机制. 硕士学位论文, 吉林大学, 2019.
24 Meng S J, Wang M L, Zhu M L, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(12), 3959.
孟帅举, 王孟璐, 朱明亮, 等. 中国有色金属学报, 2024, 34(12), 3959.
25 Meng S J, Song J L, Chen K Y, et al. Rare Metal Materials and Engineering, DOI:10. 12442/j. issn. 1002-185X. 20240480.
26 Kim W J, Jeong H G, Jeong H T. Scripta Materialia, 2009, 61(11), 1040.
[1] 潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
[2] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[3] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Xiaochun ZHANG,Liangmin YU,Xiaohui JIANG. Synthesis, Bacteriostatic and Anti-alga Capability of Monomers and Polymers Containing Capsaicin[J]. Materials Reports, 2018, 32(2): 193 -197 .
[4] CHEN Haihui, GUO Xiuyan, ZENG Yingying, MA Guojin. Study on Dynamic Models of Water Management in Proton Exchange Membrane Fuel Cell[J]. Materials Reports, 2017, 31(5): 23 -28 .
[5] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[6] QI Shuai, HUANG Guoqiang. Preparation of Graphene by Ultrasonic-assisted Exfoliation of Graphite in Binary Solvents[J]. Materials Reports, 2017, 31(9): 72 -76 .
[7] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[8] SUN Lili, WANG Zunce, WANG Yong. Cavitation Corrosion Mechanism of AC-HVAF Sprayed Amorphous Metallic Coatings and Cermet Coatings in the Hydraulic Fracturing Fluid[J]. Materials Reports, 2017, 31(16): 89 -93 .
[9] XIAO Zhijie, ZENG Kai, HE Xiaocong, XING Baoying, ZHANG Long, SUN Xinyu. Fatigue Strength Analysis of Spot Weld and Weld-bonded Joint for SUS304 Stainless Steel[J]. Materials Reports, 2017, 31(16): 112 -116 .
[10] XIA Wenming,TANG Renheng, WANG Hui, WANG Ying,XIAO Fangming, ZHU Min, SUN Tai. High-performance SiO/C Anode Material in Li-ion Battery by Pre-disproportionation Treatment[J]. Materials Reports, 2017, 31(10): 11 -15 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed