Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24010018-6    https://doi.org/10.11896/cldb.24010018
  高分子与聚合物基复合材料 |
一步法制备三维杆状聚吡咯及其吸波性能研究
程亚杰1,2, 许子琛1,2,3, 王强1,2,3,*, 魏浩1,2,3, 孙希平1,2, 王林1,2
1 哈尔滨工程大学青岛创新发展基地,山东 青岛 266000
2 青岛哈尔滨工程大学创新发展中心,山东 青岛 266000
3 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
One-step Synthesis of Three-dimensional Rod-like Polypyrrole and Investigation for Microwave Absorption Performance
CHENG Yajie1,2, XU Zichen1,2,3, WANG Qiang1,2,3,*, WEI Hao1,2,3, SUN Xiping1,2, WANG Lin1,2
1 Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
2 Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, Shandong, China
3 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 15256KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对传统聚吡咯吸波材料微观形貌单一、阻抗失配的问题,通过改变聚合条件,采用一步法制备出四种不同微观形貌的聚吡咯(PPy-X),并使用同轴法测试其介电参数,进而计算出吸波性能。研究结果表明,以MnO2为氧化剂、甲基橙为表面活性剂制备的聚吡咯(PPy-C)吸波性能最佳,在样品厚度为2.5 mm处的最佳反射损耗达到-28.97 dB(11.20 GHz),在3 mm处其有效吸收带宽(EAB)达到4.32 GHz(6.88~11.2 GHz)。PPy-C优异的吸波性能源于阻抗匹配和极化损耗,其良好的阻抗匹配性能得益于使用以MnO2为氧化剂、甲基橙为表面活性剂的氧化方法。PPy-C的极化损耗源于两方面:一方面,甲基橙掺杂引入了偶极子,造成了偶极极化;另一方面,PPy-C三维杆状结构与纳米颗粒之间的多重界面作用增强了材料的界面极化。这种聚吡咯微观形貌调控方法调整了电磁波在聚吡咯中的损耗机制,获得了更优异的吸波性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程亚杰
许子琛
王强
魏浩
孙希平
王林
关键词:  聚吡咯  形貌调控  吸波性能  介电损耗    
Abstract: This study addresses the issues of monotonous microscopic morphology and impedance mismatch inherent in traditional polypyrrole microwave absorption materials. Four distinct microstructures of polypyrrole (PPy-X) were fabricated by manipulating the polymerization conditions and employing a one-step synthesis approach. Subsequently, their dielectric parameters were assessed using the coaxial method, enabling subsequent calculation of their microwave absorption performance. The research findings reveal that polypyrrole prepared with MnO2 as the oxidant and methyl orange as the surfactant (PPy-C) exhibits optimal microwave absorption performance. The optimum reflection loss at a sample thickness of 2.5 mm reaches -28.97 dB (11.20 GHz), and the effective absorption bandwidth (EAB) extends to 4.32 GHz (6.88—11.2 GHz) at 3 mm. The exceptional absorption characteristics of PPy-C stem from impedance matching and polarization loss. Its favorable impedance matching properties are attributed to the utilization of MnO2 as the oxidant and methyl orange as the surfactant in the oxidation process. The pola-rization loss of PPy-C arises from two primary aspects: the introduction of dipoles through methyl orange doping, resulting in dipole polarization; the synergistic effect of multiple interfaces between the three-dimensional rod-like structure of PPy-C and the nanoscale particles enhances the material′s interface polarization. The microstructure modulation strategy employed for polypyrrole proficiently fine-tunes the loss mechanisms of electromagnetic waves within the material, leading to superior microwave absorption performance.
Key words:  polypyrrole    morphology control    microwave absorption performance    dielectric loss
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB34  
基金资助: 环境友好能源材料国家重点实验室开放基金(21kfhg14);中央高校基金-青年科学家基金(79000014/002)
通讯作者:  王强,青岛哈尔滨工程大学创新发展中心/哈尔滨工程大学青岛创新发展基地教师。目前主要从事海洋环境用聚合物功能材料、电磁材料等方面的研究工作。开发了自抱紧型电磁屏蔽套管、多尺度填充材料等舰船用产品。qdwq@hrbeu.edu.cn   
作者简介:  程亚杰,哈尔滨工程大学青岛创新发展基地材料科学与工程专业硕士研究生。主要研究领域为导电高分子聚吡咯基吸波材料。通过制备不同微观形貌聚吡咯和吡咯基聚合物,探究其微观形貌对介电和吸波性能的影响规律。
引用本文:    
程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
CHENG Yajie, XU Zichen, WANG Qiang, WEI Hao, SUN Xiping, WANG Lin. One-step Synthesis of Three-dimensional Rod-like Polypyrrole and Investigation for Microwave Absorption Performance. Materials Reports, 2025, 39(8): 24010018-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010018  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24010018
1 Li Mang, Zhang X Y, Tang P, et al. Ceramics International, 2023, 49(24), 40970.
2 Hong Q, Tang J X, Liu Y J, et al. Knitting Industries, 2023(10), 82(in Chinese).
洪琴, 唐俊雄, 刘元军, 等. 针织工业, 2023(10), 82.
3 Zhang K C, Chen X F, Gao X B, et al. Synthetic Metals, 2020, 260, 116282.
4 Jing B, Walid Kamal A, Safaa M E, et al. Ceramics International, 2022, 48(9), 11953.
5 Su Q, Wang B C, Mu C P, et al. Journal of Alloys and Compounds, 2021, 888(25), 161487.
6 Nasr A M H, Nashashibi A Y, Sarabandi K. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1557.
7 Saravanan C, Shekhar R C, Palaniappan S. Macromolecular Chemistry and Physics, 2006, 207(3), 342.
8 Nag S, Ghosh A, Das D, et al. Synthetic Metals, 2020, 267, 116459.
9 González-Casamachin D A, Rivera De La Rosa J, Lucio-Ortiz C J, et al. Chemical Engineering Journal, 2019, 373, 325.
10 Sapurina I, Li Y, Alekseeva E, et al. Polymer, 2017, 113, 247.
11 Ullah R, Khan N, Khattak R, et al. Polymers, 2022, 14(2), 242.
12 Kang F H, Zhang K X, Cheng Y J, et al. Engineering Plastics Application, 2023, 51(10), 24. (in Chinese).
康逢辉, 张可鑫, 程亚杰, 等. 工程塑料应用, 2023, 51(10), 24.
13 Goel S, Kumar B. Applied Physics A, 2019, 125, 289.
14 Deng J, Bai Z, Zhao B, et al. Physical Chemistry Chemical Physics, 2021, 23(37), 20795.
15 Wang X Y, Xing X F, Zhu H S, et al. Advances in Colloid and Interface Science, 2023, 318, 102960.
16 Peitao H, Shun D, Li X T, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(27), 10230.
17 Wang M, Wang H Q, An L L, et al. Journal of Colloid and Interface Science, 2020, 564, 454.
18 Duan Y P, Ma B, Huang L X, et al. Advanced Materials Technologies, 2023, 8(14), 2202172.
19 Li S S, Ma T T, Chai Z Y, et al. Carbon, 2023, 207, 105.
20 Zhu L L, Kang S, Hu Z M, et al. Acta Materiae Compositae Sinica, 2023, 40(6), 3167. (in Chinese).
朱莉莉, 康帅, 胡祖明, 等. 复合材料学报, 2023, 40(6), 3167.
21 Han S J, Wang S Y, Li W H, et al. Ceramics International, 2018, 44(9), 10352.
22 Wang H G, Meng F B, Huang F, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 12142.
23 Shi Y Y, Yu L J, Li K, et al. Composites Science and Technology, 2020, 197, 108246.
[1] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[2] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[3] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[4] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[5] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[6] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[7] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[8] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[9] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[10] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[11] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[12] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[13] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[14] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[15] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed