Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 23120260-8    https://doi.org/10.11896/cldb.23120260
  无机非金属及其复合材料 |
可调谐Y2MgTiO6:Tm3+,Dy3+荧光粉的发光特性和能量转移机理
王露燕1, 熊正烨1, 钟国涛2, 黄劲哲2, 刘昊1, 郭竞渊1,*
1 广东海洋大学电子与信息工程学院,广东 湛江 524088
2 广东海洋大学海洋工程与能源学院,广东 湛江 524088
Luminescence Properties and Energy Transfer Mechanism of Tunable Y2MgTiO6:Tm3+, Dy3+ Phosphors
WANG Luyan1, XIONG Zhengye1, ZHONG Guotao2, HUANG Jinzhe2, LIU Hao1, GUO Jingyuan1,*
1 School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
2 College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
下载:  全 文 ( PDF ) ( 23278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用高温固相反应法研制了一系列发光性能优异的Y2MgTiO6:Tm3+,Dy3+(YMT:Tm3+,Dy3+)双钙钛矿荧光粉。利用X射线粉末衍射(XRD)、光致发光光谱、荧光寿命谱和X射线激发光谱等对制备产物的物相结构、组分和发光性能进行研究,并分析了Dy3+掺杂量对发光性能的影响。通过比较YMT:0.05Tm3+,yDy3+(y=0,0.01,0.05,0.1)荧光光谱和荧光寿命的变化规律可知,Tm3+→Dy3+存在有效能量转移,能量转移机制为偶极-偶极相互作用;在紫外光激发下,YMT:0.05Tm3+,yDy3+荧光粉的发光为蓝色-白色-黄色的宽带可调颜色,白光的CIE坐标为(0.331 6,0.326 1),色温为5 538 K,量子效率(43.72%)较高,且稳定性较好;荧光粉在X射线激发下的强度比紫外光激发下的强度更高,对X射线具有较高的抗辐射性和良好的热稳定性。研究结果表明,YMT:Tm3+,Dy3+可实现宽带可调谐白光发射,是一种潜在的X射线或紫外光激发白光发射荧光材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王露燕
熊正烨
钟国涛
黄劲哲
刘昊
郭竞渊
关键词:  Y2MgTiO6  光致发光  能量转移  X射线激发发光  颜色可调谐    
Abstract: A series of Y2MgTiO6:Tm3+, Dy3+(YMT:Tm3+, Dy3+) double perovskite phosphors with excellent luminescent properties were prepared by high temperature solid-state reaction method. The phase structure, composition and luminescence properties of the prepared products were studied by X-ray powder diffraction(XRD), photoluminescence spectrum, fluorescence lifetime spectrum and X-ray excitation spectrum, and the influence of Dy3+ doping amount on luminescent properties was analyzed. By comparing the photoluminescence spectrum and fluorescence lifetime of YMT:0.05Tm3+, yDy3+(y=0, 0.01, 0.05,0.1), it is found that there is an effective energy transfer from Tm3+ to Dy3+, and the energy transfer mechanism is dipole-dipole interaction. Under the excitation of ultraviolet light, the luminescence of YMT:0.05Tm3+, yDy3+ phosphor is blue-white-yellow broadband adjustable color, the CIE coordinate of white light is (0.331 6, 0.326 1), the color temperature is 5 538 K, the quantum efficiency(43.72%) is high, and the stability is good. The intensity of the phosphor under X-ray excitation is higher than that under ultraviolet excitation, and it has high radiation resistance and good thermal stability for X-ray. The research results show that YMT:Tm3+, Dy3+ can achieve broadband tunable white light emission, which is a potential X-ray or ultraviolet light excited white light emitting fluorescent material.
Key words:  Y2MgTiO6    photoluminescence    energy transfer    X-ray excitation luminescence    color tunable
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  O433  
  O434  
  TQ422  
基金资助: 湛江科技计划项目(2022A05022);广东海洋大学科研项目(060302112102);湛江市科技发展专项(2023A21616)
通讯作者:  郭竞渊,博士,广东海洋大学电子与信息工程学院讲师。目前主要从事稀土发光材料、热释光剂量材料等方面的研究。411752945@qq.com   
作者简介:  王露燕,广东海洋大学硕士研究生,在熊正烨教授和郭竞渊讲师的指导下进行研究,目前主要研究领域为稀土发光材料与器件。
引用本文:    
王露燕, 熊正烨, 钟国涛, 黄劲哲, 刘昊, 郭竞渊. 可调谐Y2MgTiO6:Tm3+,Dy3+荧光粉的发光特性和能量转移机理[J]. 材料导报, 2025, 39(8): 23120260-8.
WANG Luyan, XIONG Zhengye, ZHONG Guotao, HUANG Jinzhe, LIU Hao, GUO Jingyuan. Luminescence Properties and Energy Transfer Mechanism of Tunable Y2MgTiO6:Tm3+, Dy3+ Phosphors. Materials Reports, 2025, 39(8): 23120260-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120260  或          https://www.mater-rep.com/CN/Y2025/V39/I8/23120260
1 Pust P, Schmidt P J, Schnick W. Nature Materials, 2015, 14(5), 454.
2 Han M X, Cai L, Wang X Z, et al. Materials Reports, 2021, 35(S1), 51 (in Chinese).
韩美旭, 蔡伦, 王小泽, 等. 材料导报, 2021, 35(S1), 51.
3 Zhou F X, Zheng L M, Wang M, et al. Journal of the Chinese Society of Rare Earths, 2022, 40(5), 744 (in Chinese).
周方贤, 郑雷铭, 王明, 等. 中国稀土学报, 2022, 40(5), 744.
4 Zhu W, Yang A, Hao Z, et al. Ceramics International, 2024, 50(2), 3101.
5 Denault K A, Brgoch J, Gaultois M W, et al. Chemistry of Materials, 2014, 26(7), 2275.
6 Zhou Q, Zhou Y Y, Liu Y, et al. Journal of Materials Chemistry C, 2015, 3(13), 3055.
7 Yantake R, Sidike A, Yusufu T. Journal of Rare Earths, 2022, 40(3), 390.
8 Sun J Y, Zhang X Y, Xia Z G, et al. Journal of Applied Physics, 2012, 111(1), 013101.
9 Zhang L, Han P D, Han Y, et al. Journal of Alloys and Compounds, 2013, 558, 229.
10 He H, Song X F, Fu R L, et al. Journal of Alloys and Compounds, 2010, 493(1-2), 401.
11 Huh Y D, Shim J H, Kim Y, et al. Journal of the Electrochemical Society, 2003, 150(2), H57.
12 Tang J, Si J, Fan X Y, et al. Journal of Rare Earths, 2022, 40(6), 878.
13 Gao S J, Wang Z P, Zhou L Y, et al. Journal of the Chinese Ceramic Society, 2018, 46(7), 1021(in Chinese).
高少杰, 王智朋, 周玲玉, 等. 硅酸盐学报, 2018, 46(7), 1021.
14 Choudhary A K, Dwivedi A, Rai A, et al. Journal of Alloys and Compounds, 2021, 884, 161128.
15 Wu L, Zhang Y, Gui M Y, et al. Journal of Materials Chemistry, 2012, 22(13), 6463.
16 Li Z, Wang Y N, Xu Y P, et al. Spectroscopy and Spectral Analysis, 2023, 43(2), 623 (in Chinses).
李兆, 王亚楠, 徐祎朴, 等. 光谱学与光谱分析, 2023, 43(2), 623.
17 Hu X Y, Cao L F, Li J H, et al. Spectroscopy and Spectral Analysis, 2022, 42(7), 2063 (in Chinese).
胡欣妍, 曹龙菲, 李金华, 等. 光谱学与光谱分析, 2022, 42(7), 2063.
18 Fu H, Ren Q, Wu X L, et al. Journal of Luminescence, 2022, 252, 119330.
19 Naresh V, Lee N. Materials Science and Engineering B, 2021, 271, 115306.
20 Xie J X, Geng X J, Gao R H, et al. Journal of Optoelectronics·Laser, 2018, 29(4), 377 (in Chinses).
解吉星, 耿秀娟, 高荣华, 等. 光电子·激光, 2018, 29(4), 377.
21 Gopal R, Manam J. Ceramics International, 2022, 48(20), 30724.
22 Farooq U, Zhao Z, Sui Z L, et al. Journal of Alloys and Compounds, 2019, 778, 942.
23 Fan M H, Liu S, Yang K, et al. Ceramics International, 2020, 46(5), 6926.
24 Fuertes V, Fernández J F, Enríquez E. Journal of the European Ceramic Society, 2019, 39(10), 3221.
25 Shanbhag V V, Prashantha S C, Naik R, et al. Materials Today: Proceedings, 2021, 46, 5953.
26 Zhuo M P, Yu Y J, Ding L Y, et al. Materials Reports, 2023, 37(3), 50 (in Chinese).
卓明鹏, 俞燕君, 丁灵奕, 等. 材料导报, 2023, 37(3), 50.
27 Gao Y L, Zhang Y L, Yin L S. Materials Reports, 2014, 28(S1), 246 (in Chinese).
高银留, 张优灵, 尹荔松. 材料导报, 2014, 28(S1), 246.
28 Téllez D A L, Buitrago D M, Cardona C R, et al. Journal of Molecular Structure, 2014, 1067, 205.
29 Li J Q, Liao J S, Wen H R, et al. Journal of Luminescence, 2019, 213, 356.
30 Liu H, Guo J Y, Li X Y, et al. Journal of Luminescence, 2024, 267, 120392.
31 Jia Y Q. Journal of Solid State Chemistry, 1991, 95(1), 184.
32 Jiao M M, Guo N, Lü W, et al. Dalton Transactions, 2013, 42(34), 12395.
33 Luo J, Zhang Z Q, Xu J H, et al. Acta Physica Sinica, 2023, 72(1), 315(in Chinese).
罗杰, 张子秋, 徐俊豪, 等. 物理学报, 2023, 72(1), 315.
34 You P L, Yin G F, Chen X C, et al. Optical Materials, 2011, 33(11), 1808.
35 Dexter D L. The Journal of Chemical Physics, 1953, 21(5), 836.
36 Kumar A, Manam J. Journal of Alloys and Compounds, 2020, 829, 154610.
37 Krishna V M, Mahamuda S, Talewar R A, et al. Journal of Alloys and Compounds, 2018, 762, 814.
38 Srihari T, Jayasankar C K. Optical Materials, 2017, 69, 87.
39 Liao S Z, Song A, Zhang J L, et al. Ceramics International, 2023, 49(16), 27408.
40 Ling Y, Zhao R L, Guo X, et al. Optik, 2023, 287, 171115.
41 Islam S U, Latief U, Ahmad I, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(29), 23137.
42 Liu H, Xiong Z Y, Zeng C X, et al. Nuclear Techniques, 2023, 46(6), 60(in Chinese).
刘昊, 熊正烨, 曾才兴, 等. 核技术, 2023, 46(6), 60.
43 Paulose P I, Jose G, Thomas V, et al. Journal of Physics and Chemistry of Solids, 2003, 64(5), 841.
44 Guo Y, Moon B K, Choi B C, et al. Journal of Luminescence, 2017, 181, 96.
45 Shi L Y, Zhao D, Zhang R J, et al. Dalton Transactions, 2022, 51(9), 3686.
46 Du P, Yu J S. Materials Research Bulletin, 2016, 84, 303.
47 Blasse G. Journal of Solid State Chemistry, 1986, 62(2), 207.
48 Li B, Huang X Y, Guo H, et al. Dyes and Pigments, 2018, 150, 67.
49 Zhang J, Ma Z Y, Guo J G, et al. Journal of Luminescence, 2019, 215, 116732.
50 Som S, Mitra P, Kumar V, et al. Dalton Transactions, 2014, 43(26), 9860.
51 Yadav R S, Dhoble S J, Rai S B. Sensors and Actuators B: Chemical, 2018, 273, 1425.
52 Zhao Y C, Zhang R B, Wang J J, et al. Journal of the Chinese Society of Rare Earths, 2023, 41(5), 853 (in Chinese).
赵宇聪, 张汝彬, 王俊杰, 等. 中国稀土学报, 2023, 41(5), 853.
53 Li Y L, Zhong X, Yu Y, et al. Materials Chemistry and Physics, 2021, 260, 124149.
54 Xu Z, Guo J Y, Xiong Z Y, et al. Acta Physica Sinica, 2021, 70(16), 295(in Chinese).
续卓, 郭竞渊, 熊正烨, 等. 物理学报, 2021, 70(16), 295.
55 Zhang J M, Yuan L F, Jin Y H, et al. Journal of Luminescence, 2022, 241, 118518.
[1] 罗文柳, 杨玲, 叶懋, 欧阳竑, 许积文, 唐纳. (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光[J]. 材料导报, 2024, 38(18): 23040126-7.
[2] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[3] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[4] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[5] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[6] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[7] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[8] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[9] 张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
[10] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed