Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 11-15    https://doi.org/10.11896/j.issn.1005-023X.2017.018.003
  材料研究 |
热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*
张小红1, 杨卿1,2, 张旭晨1, 马研1, 易筱银1
1 西安理工大学材料科学与工程学院,西安 710048;
2 陕西省电工材料与熔渗技术重点实验室,西安 710048
Preparation of ZnO∶Ga Films by Thermal Oxidation of ZnS∶Ga and Their Photoluminescent Properties
ZHANG Xiaohong1, YANG Qing1,2, ZHANG Xuchen1, MA Yan1, YI Xiaoyin1
1 Faculty of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048;
2 Shaanxi Province Key Laboratory for Electrical Materials and Infiltration, Xi’an 710048
下载:  全 文 ( PDF ) ( 1774KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用化学浴沉积法制备了不同Ga掺杂量的ZnS (ZnS∶Ga)薄膜,并采用热氧化法生长了Ga掺杂ZnO(ZnO∶Ga)薄膜,研究了ZnO∶Ga薄膜的表面形貌、成分及光致发光性能。结果表明:Ga的掺入改变了ZnO薄膜的微观结构、化学计量比、氧空位的相对含量,进而影响了薄膜的光致发光性能。随着Ga掺杂量增加,ZnO薄膜的致密度提高,颗粒尺寸减小;同时改善了ZnO的化学计量比,氧空位相对含量随之减少;ZnO薄膜的紫外光与可见光强度比增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小红
杨卿
张旭晨
马研
易筱银
关键词:  ZnS薄膜  ZnO薄膜  Ga掺杂  热氧化  光致发光    
Abstract: Ga-doped ZnS (ZnS∶Ga) films with different Ga content were prepared by chemical bath deposition, and then the thermal oxidation in the air was subsequently performed for the growth of Ga-doped ZnO (ZnO∶Ga) films. The microstructures, surface compositions, and photoluminescent properties of the ZnO∶Ga films were investigated. The results showed that the microstructure, stoichiometric ratio, and the relative content of oxygen vacancy of ZnO films were altered due to Ga doping, which then affected the photoluminescent properties of ZnO films. The increase of Ga content led to improved compactness and refined particle size of the product, resulted in a more near-stoichiometric composition of ZnO, lowered the relative content of oxygen vacancy, also enhanced the IUV/IVis ratio.
Key words:  ZnS film    ZnO film    Ga doping    thermal oxidation    photoluminescence
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB43  
基金资助: 国家自然科学基金(51202191);陕西省自然科学基础研究计划(2015JM5179);陕西省教育厅重点实验室科学研究计划项目(15JS072)
通讯作者:  杨卿:通讯作者,男,1982年生,博士,教授,研究方向为半导体金属氧化物 E-mail:yangqing@xaut.edu.cn   
作者简介:  张小红:女,1991年生,硕士研究生,研究方向为镓掺杂氧化锌 E-mail:zhangxiaohongfan@163.com
引用本文:    
张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
ZHANG Xiaohong, YANG Qing, ZHANG Xuchen, MA Yan, YI Xiaoyin. Preparation of ZnO∶Ga Films by Thermal Oxidation of ZnS∶Ga and Their Photoluminescent Properties. Materials Reports, 2017, 31(18): 11-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.003  或          https://www.mater-rep.com/CN/Y2017/V31/I18/11
1 Service R F. Will UV lasers beat the blues[J]. Science, 1997,276(5314):895.
2 Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxi-de nanowire arrays[J]. Science, 2006,312(5771):242.
3 Ong K P, Singh D J, Wu P. Analysis of the thermoelectric properties of n-type ZnO[J]. Phys Rev B, 2011,83(11):115110.
4 Cheng P F, Zhang Y T, Yu H W. The research development of the point defect structure and p-type transition of ZnO[J]. Mater Rev: Rev, 2011,25(1):22(in Chinese).
成鹏飞, 张英堂, 余花娃. ZnO的点缺陷结构与p型化转变的研究进展[J]. 材料导报: 综述篇, 2011,25(1):22.
5 Kim J B, Jin S B, Wen L, et al. Low temperature, high conductivity Al-doped ZnO film fabrication using modified facing target sputtering[J]. Thin Solid Films, 2015,587:88.
6 Ma Q B, Ye Z Z, He H P, et al. Highly near-infrared reflecting and transparent conducting ZnO∶Ga films: Substrate temperature effect[J]. J Phys D: Appl Phys, 2008,41(5):055302.
7 Ding L H, Yang Y X, Jiang X W, et al. Photoluminescence of undoped and B-doped ZnO in silicate glasses[J]. J Non-Crystalline So-lids, 2008,354(12):1382.
8 Yang Q, Zhou X H, Nukui T, et al. Time-resolved ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layer[J]. AIP Adv, 2014,4(2):027101.
9 Su J F, Tang C J, Niu Q, et al. Microstructure, optical and electrical properties of Al-doped ZnO films grown by MOCVD [J]. Appl Surf Sci, 2012,258(22):8595.
10Yang S H, Zhang Y L, Wang X S, et al. Preparation of Y doped ZnO films by sol-gel method and investigation of their optoelectrical properties[J]. Mater Rev: Res, 2012,26(3):24(in Chinese).
阳生红, 张曰理, 王旭升, 等. 溶胶-凝胶法制备Y掺杂ZnO薄膜及其光电性能研究[J]. 材料导报: 研究篇, 2012,26(3):24.
11Cao P, Bai Y. Structure and optical properties of electrodeposited Nd-doped ZnO thin films[J]. Rare Metal Mater Eng, 2016,45(6):1419.
12Yang Q, Saeki Y, Izumi S, et al. Novel ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layers[J]. Appl Sur Sci, 2010,256(2):6928.
13Zou Y S, Yang H, Wang H P, et al. Microstructure, optical and photoluminescence properties of Ga-doped ZnO films prepared by pulsed laser deposition[J]. Physica B, 2013,414(4):7.
14Shinde S S, Shinde P S, Oh Y W, et al. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films [J]. Appl Surf Sci, 2012,258(24):9969.
15Zhou X H, Yang Q, Zou J T, et al. Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films[J]. Acta Phys Sin, 2015,64(8):087803(in Chinese).
周小红, 杨卿, 邹军涛, 等. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响[J].物理学报, 2015,64(8):087803.
16Chelvanathan P, Yusoff Y, Haque F, et al. Growth and characte-rization of RF-sputtered ZnS thin film deposited at various substrate temperatures for photovoltaic application[J]. Appl Surf Sci, 2015,334:138.
17Islam M M, Ishizuka S, Yamada A, et al. CIGS solar cell with MBE-grown ZnS buffer layer[J]. Solar Energy Mater Solar Cells, 2009,93(6):970.
18Wei A X, Liu J, Zhuang M X, et al. Preparation and characterization of ZnS thin films prepared by chemical bath deposition[J]. Mater Sci Semiconductor Processing, 2013,16(6):1478.
19Akhtar M S, Malik M A, Alghamdi Y G, et al. Chemical bath de-position of Fe-doped ZnS thin films: Investigations of their ferromagnetic and half-metallic properties[J]. Mater Sci Semiconductor Processing, 2015,39:283.
20Huang C M, Chen L C, Pan G T, et al. Effect of Ni on the growth and photoelectronchemical properties of ZnS thin films[J]. Mater Chem Phys, 2009,117(1):156.
21Gilbert B, Frazer B H, Zhang H, et al. X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide[J]. Phys Rev B, 2002,66(24):245205.
22Liu T Z, Ke H, Zhang H, et al. Effect of four different zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath de-position[J]. Mater Sci Semiconductor Processing, 2014,26(1):301.
23Zhou L M, Tang N, Wu S M, et al. Influence of deposition time on ZnS thin films performance with chemical bath deposition[J]. Phys Procedia, 2011,22:354.
24Liu W. Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air-stable single-source molecular precursor in air[J]. Mater Lett, 2006,60(4):551.
25Xu D, Duan X C, Zhu X B, et al. Effect of Al doping concentration on the structure,electrical and optical properties of ZnO∶Al films[J]. Mater Rev, 2008,22(S1):63(in Chinese).
徐迪, 段学成, 朱协彬, 等. Al掺杂量对ZnO∶Al薄膜微观结构和光电性能的影响[J]. 材料导报, 2008,22(S1):63.
26Wu Y H, Li C P, Li M G, et al. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering[J]. Ceram Int, 2016,42(9):10847.
27Hsieh P T, Chen Y C, Kao K S, et al. Luminescence mechanism of ZnO thin film investigated by XPS measurement[J]. Appl Phys A, 2008,90(2):317.
28Li D H, Yu S F, Abiyasa A P, et al. Strain dependence of lasing mechanisms in ZnO epilayers[J]. Appl Phys Let, 2005,86(26):261111.
29Yun E J, Jung J W, Lee B C, et al. Characterization of the properties of high-energy electron irradiated Al-doped ZnO thin films prepared by rf magnetron sputtering using Ar plasma[J]. Surf Coat Technol, 2011,205(21-22):5130.
30Wang Q P, Zhang D H, Ma H L, et al. Photoluminescence of ZnO films prepared by r.f. sputtering on different substrates[J]. Appl Surf Sci, 2003,220(1-4):12.
31Zhang D H, Wang Q P, Xue Z Y. Photoluminescence of ZnO films excited with light of different wavelength[J]. Appl Surf Sci, 2003,207(1-4):20.
32Xu P S, Sun Y M, Shi C S, et al. Electronic structure of ZnO and its defects[J]. Sci China Series A: Mathematics, 2001,44(9):1174.
[1] 罗文柳, 杨玲, 叶懋, 欧阳竑, 许积文, 唐纳. (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光[J]. 材料导报, 2024, 38(18): 23040126-7.
[2] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[3] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[4] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[5] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[6] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[7] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[8] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[9] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[10] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[11] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[12] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed