Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24080169-13    https://doi.org/10.11896/cldb.24080169
  新型生物医用材料 |
刺激响应性聚氨基酸材料的设计与应用
王宛滢, 李宁, 宋子元*
苏州大学功能纳米与软物质研究院,江苏省碳基功能材料与器件高技术研究重点实验室,江苏 苏州 215123
Design and Application of Stimulus-responsive Polypeptide Materials
WANG Wanying, LI Ning, SONG Ziyuan*
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
下载:  全 文 ( PDF ) ( 17926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由氨基酸N-羧酸环内酸酐开环聚合得到的聚氨基酸材料是一类重要的生物医用材料。通过功能化单体和聚合后修饰的设计,能够赋予聚氨基酸材料针对内源性和外源性刺激的响应性,使其能够特异性地对组织微环境做出结构响应,实现偶联或包载药物的选择性释放。因此,刺激响应性聚氨基酸材料在药物递送、组织工程、免疫调节和抗菌等生物医学领域具有广泛应用。迄今为止,国内外学者们通过合理的聚氨基酸材料结构设计,实现了针对不同刺激、多种模式的载药纳米颗粒的结构改变,并成功将其应用到癌症等疾病的诊疗中。本综述从聚氨基酸的刺激响应化学出发,总结归纳了不同生理环境下不同模式的纳米药物设计及其在生物医学领域的应用,并对刺激响应性聚氨基酸材料领域的发展提出了自己的理解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宛滢
李宁
宋子元
关键词:  聚氨基酸  氨基酸N-羧酸环内酸酐  刺激响应性  生物医学应用    
Abstract: Polypeptide materials, obtained by ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs), are an important class of biomedical materials. Through the design of functional monomers and post-polymerization modifications, polypeptide materials are able to respond to endogenous or exogenous stimuli through structural changes under specific microenvironment, thus selectively releasing the conjugated or encapsulated drugs on demand. Therefore, stimulus-responsive polypeptide materials have a wide range of studies in various biomedical fields such as drug delivery, tissue engineering, immune regulation, and antibacterial applications. Researchers have devoted numerous efforts to the design of stimulus-responsive polypeptide materials for the treatment of cancer and other diseases, aiming to enable versatile structural changes to specific stimuli. Herein we reviewed the development of stimulus-responsive chemistry in polypeptides, summarized the versatile designs of polypeptide-based nanomedicines, and highlighted their biomedical applications. The comments on the future development of stimulus-responsive polypeptides were incorporated at the end of our review.
Key words:  polypeptides    amino acid N-carboxyanhydrides    stimulus responsiveness    biomedical application
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金(22101194);江苏省自然科学基金(BK20210733);苏州市科技计划项目(ZXL2021447)
通讯作者:  *宋子元,博士,苏州大学功能纳米与软物质研究院教授、博士研究生导师。主要从事聚氨基酸的合成方法学、聚合机理、二级结构调控和生物医学应用方向的研究。zysong@suda.edu.cn   
作者简介:  王宛滢,苏州大学功能纳米与软物质研究院博士研究生,在宋子元教授的指导下进行研究。目前主要研究方向为聚氨基酸材料在急性髓系白血病治疗中的应用。
李宁,苏州大学功能纳米与软物质研究院博士研究生,在宋子元教授的指导下进行研究。目前主要研究方向为共聚氨基酸纳米颗粒表面化学调控和体内命运。共同第一作者
引用本文:    
王宛滢, 李宁, 宋子元. 刺激响应性聚氨基酸材料的设计与应用[J]. 材料导报, 2025, 39(5): 24080169-13.
WANG Wanying, LI Ning, SONG Ziyuan. Design and Application of Stimulus-responsive Polypeptide Materials. Materials Reports, 2025, 39(5): 24080169-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080169  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24080169
1 Song Z, Han Z, Lv S, et al. Chemical Society Reviews, 2017, 46, 6570.
2 Cabral H, Miyata K, Osada K, et al. Chemical Reviews, 2018, 118, 6844.
3 Jiang Z, Liu Y, Feng X, et al. Journal of Functional Polymers, 2019, 32(1), 13 (in Chinese).
姜中雨, 刘仪轩, 冯祥汝, 等. 功能高分子学报, 2019, 32(1), 13.
4 Rasines M A, Allison-Logan S, Karimi F, et al. Chemical Society Reviews, 2020, 49, 4737.
5 Melnyk T, Dordevi S, Conejos-Sánchez I, et al. Advanced Drug Delivery Reviews, 2020, 160, 136.
6 Liu Y, Yin L. Advanced Drug Delivery Reviews, 2021, 171, 139.
7 Zhang P, Li M, Xiao C, et al. Chemical Communications, 2021, 57, 9489.
8 Zhang Y, He P, Zhang P, et al. Advanced Healthcare Materials, 2021, 10, 2001974.
9 Jiang Y, Chen Y, Song Z, et al. Advanced Drug Delivery Reviews, 2021, 170, 261.
10 Yang F, Song Z, Yin L, et al. Materials Reports, 2022, 36(3), 18 (in Chinese).
杨方平, 宋子元, 殷黎晨, 等. 材料导报, 2022, 36(3), 18.
11 Wu Y, Chen K, Wang J, et al. Progress in Polymer Science, 2023, 141, 101679.
12 Li N, Lei Y, Song Z, et al. Current Opinion in Solid State and Materials Science, 2023, 27, 101104.
13 Wu Y, Chen K, Wang J, et al. Journal of the American Chemical Society, 2024, 146, 24189.
14 Baumgartner R, Fu H, Song Z, et al. Nature Chemistry, 2017, 9, 614.
15 Wu Y, Zhang D, Ma P, et al. Nature Communications, 2018, 9, 5297.
16 Song Z, Fu H, Wang J, et al. Proceedings of the National Academy of Sciences, 2019, 116, 10658.
17 Xia Y, Song Z, Tan Z, et al. Nature Communications, 2021, 12, 732.
18 Tian Z Y, Zhang Z, Wang S, et al. Nature Communications, 2021, 12, 5810.
19 Wang W, Fu H, Lin Y, et al. Accounts of Materials Research, 2023, 4, 604.
20 Liu X, Huang J, Wang J, et al. CCS Chemistry, DOI:10.31635/ccschem.024.202403954.
21 Ji G, Zheng X, Hou X, et al. Chinese Chemical Letters, 2024, 35, 108872.
22 Sun X, Li A, Li N, et al. Biomacromolecules, 2024, 25, 6093.
23 Li N, Xiao S, Jin X, et al. Chinese Journal of Chemistry, 2024, 42, 1209.
24 Xia J, Wang W, Jin X, et al. Biomaterials Science, 2024, 12, 3896.
25 Stuart M A C, Huck W T S, Genzer J, et al. Nature Materials, 2010, 9, 101.
26 Mura S, Nicolas J, Couvreur P. Nature Materials, 2013, 12, 991.
27 Langton M J. Nature Reviews Chemistry, 2021, 5, 46.
28 Ma P, Wang Q, Luo X, et al. Biomaterials Science, 2023, 11, 5078.
29 Guerassimoff L, Ferrere M, Bossion A, et al. Chemical Society Reviews, 2024, 53, 6511.
30 Liu Y, Li C, Yang X, et al. Biomaterials Science, 2024, 12, 3805.
31 Huang J, Heise A. Chemical Society Reviews, 2013, 42, 7373.
32 Shen Y, Fu X, Fu W, et al. Chemical Society Reviews, 2015, 44, 612.
33 Wang X, Song Z, Wei S, et al. Biomaterials, 2021, 275, 120913.
34 Deming T J. Chemical Reviews, 2016, 116, 786.
35 Kramer J R, Deming T J. Journal of the American Chemical Society, 2012, 134, 4112.
36 Liu H, Wang R, Wei J, et al. Journal of the American Chemical Society, 2018, 140, 6604.
37 Zheng Y, Wang Z, Li Z, et al. Angewandte Chemie International Edition, 2021, 60, 22529.
38 Zheng Y, Liu Y, Wu Z, et al. Advanced Materials, 2023, 35, 2210986.
39 Rodriguez A R, Kramer J R, Deming T J. Biomacromolecules, 2013, 14, 3610.
40 Wu G, Ge C, Liu X, et al. Chemical Communications, 2019, 55, 7860.
41 Yao Q, Wu G, Hao H, et al. Biomacromolecules, 2021, 22, 2563.
42 Wu G, Zhou H, Zhang J, et al. Nature Synthesis, 2023, 2, 515.
43 Sulistio A, Lowenthal J, Blencowe A, et al. Biomacromolecules, 2011, 12, 3469.
44 Sulistio A, Blencowe A, Widjaya A, et al. Polymer Chemistry, 2012, 3, 224.
45 Yang J, Zou H, Ding J, et al. Acta Polymerica Sinica, 2021, 52(8), 960 (in Chinese).
杨佳臻, 邹昊洋, 丁建勋, 等. 高分子学报, 2021, 52(8), 960.
46 Sun Y, Hou Y, Zhou X, et al. ACS Macro Letters, 2015, 4, 1000.
47 Chen C, Wang Z, Li Z. Biomacromolecules, 2011, 12, 2859.
48 Yan L, Yang L, He H, et al. Polymer Chemistry, 2012, 3, 1300.
49 Liu G, Dong C M. Biomacromolecules, 2012, 13, 1573.
50 Yin L, Tang H, Kim K H, et al. Angewandte Chemie International Edition, 2013, 52, 9182.
51 Song Z, Kim H, Ba X, et al. Soft Matter, 2015, 11, 4091.
52 Xiong W, Fu X, Wan Y, et al. Polymer Chemistry, 2016, 7, 6375.
53 Bellomo E G, Wyrsta M D, Pakstis L, et al. Nature Materials, 2004, 3, 244.
54 Rodríguez-Hernández J, Lecommandoux S. Journal of the American Chemical Society, 2005, 127, 2026.
55 Krannig K S, Schlaad H. Journal of the American Chemical Society, 2012, 134, 18542.
56 Chen J, Ding J, Zhang Y, et al. Polymer Chemistry, 2015, 6, 397.
57 Du J Z, Li H J, Wang J. Accounts of Chemical Research, 2018, 51, 2848.
58 Engler A C, Bonner D K, Buss H G, et al. Soft Matter, 2011, 7, 5627.
59 Song Z, Mansbach R A, He H, et al. Nature Communications, 2017, 8, 92.
60 Bae Y, Nishiyama N, Fukushima S, et al. Bioconjugate Chemistry, 2005, 16, 122.
61 Quader S, Liu X, Toh K, et al. Biomaterials, 2021, 267, 120463.
62 Wong S, Kemp J A, Shim M S, et al. Biomaterials Science, 2020, 8, 6718.
63 Xie J, Zhao X, Zhang P, et al. Advanced Science, 2023, 10, 2204866.
64 Wang R, Yin B, Guo Y, et al. ACS Applied Polymer Materials, 2024, 6, 11653.
65 Lv S, Wu Y, Cai K, et al. Journal of the American Chemical Society, 2018, 140, 1235.
66 Xiong M, Han Z, Song Z, et al. Angewandte Chemie International Edition, 2017, 56, 10826.
67 Ge C, Zhu J, Ye H, et al. Journal of the American Chemical Society, 2023, 145, 11206.
68 Ge C, He J, Gan M, et al. Biomacromolecules, 2024, 25, 3373.
69 Cheng Y, He C, Xiao C, et al. Polymer Chemistry, 2011, 2, 2627.
70 Chopko C M, Lowden E L, Engler A C, et al. ACS Macro Letters, 2012, 1, 727.
71 Jing X, Zhu Z, Wang S, et al. Biomacromolecules, 2024, 25, 5343.
72 Kotharangannagari V K, Sánchez-Ferrer A, Ruokolainen J, et al. Macromolecules, 2011, 44, 4569.
73 Kumar S, Allard J F, Morris D, et al. Journal of Materials Chemistry, 2012, 22, 7252.
74 Ding J, Zhuang X, Xiao C, et al. Journal of Materials Chemistry, 2011, 21, 11383.
75 Wang K, Luo G F, Liu Y, et al. Polymer Chemistry, 2012, 3, 1084.
76 Tai W, Mo R, Di J, et al. Biomacromolecules, 2014, 15, 3495.
77 Deepagan V G, Kwon S, You D G, et al. Biomaterials, 2016, 103, 56.
78 Yu J, Qian C, Zhang Y, et al. Nano Letters, 2017, 17, 733.
79 Hu X, Yu J, Qian C, et al. ACS Nano, 2017, 11, 613.
80 Zhang P, Yang H, Shen W, et al. ACS Biomaterials Science & Engineering, 2020, 6, 2167.
81 Qian C, Feng P, Yu J C, et al. Angewandte Chemie International Edition, 2017, 56, 2588.
82 Xu Q, He C, Ren K, et al. Advanced Healthcare Materials, 2016, 5, 1979.
83 Yu S, Wang C, Yu J, et al. Advanced Materials, 2018, 30, 1801527.
84 Negri G E, Deming T J. ACS Macro Letters, 2016, 5, 1253.
85 Ji S, Xu L, Fu X, et al. Macromolecules, 2019, 52, 4686.
86 Zhao L, Ding J, Xiao C, et al. Journal of Materials Chemistry, 2012, 22, 12319.
87 Naito M, Ishii T, Matsumoto A, et al. Angewandte Chemie International Edition, 2012, 51, 10751.
88 Fu X, Ma Y, Shen Y, et al. Biomacromolecules, 2014, 15, 1055.
89 Li S L, Hou Y, Hu Y, et al. Biomaterials Science, 2017, 5, 1558.
90 Lee Y, Miyata K, Oba M, et al. Angewandte Chemie International Edition, 2008, 47, 5163.
91 Chen P, Qiu M, Deng C, et al. Biomacromolecules, 2015, 16, 1322.
92 Chen Y, Pang X H, Dong C M. Advanced Functional Materials, 2010, 20, 579.
93 Chen L, Hong Y, He S, et al. Acta Physico-Chimica Sinica, 2021, 37, 1910059.
94 Tian H, Guo Z, Lin L, et al. Journal of Controlled Release, 2014, 174, 117.
95 Chen J, Dong X, Feng T, et al. Acta Biomaterialia, 2015, 26, 45.
96 Miyata K, Oba M, Nakanishi M, et al. Journal of the American Chemical Society, 2008, 130, 16287.
97 Zhou Y, Liang Q, Wu X, et al. Advanced Materials, 2023, 35, 2210691.
98 Zhu J, Li X, Zhou Y, et al. Science Advances, 2024, 10, eabd7904.
99 Ye H, Yan J, Ge C, et al. Chemical Engineering Journal (Lausanne), 2024, 483, 149093.
100 Lee Y, Ishii T, Cabral H, et al. Angewandte Chemie International Edition, 2009, 48, 5309.
101 Thambi T, Son S, Lee D S, et al. Acta Biomaterialia, 2016, 29, 261.
102 Kinoh H, Miura Y, Chida T, et al. ACS Nano, 2016, 10, 5643.
103 Xue S, Gu X, Zhang J, et al. Biomacromolecules, 2018, 19, 3586.
104 Lv S, Tang Z, Song W, et al. Small, 2017, 13, 1600954.
105 Li M, Song W, Tang Z, et al. ACS Applied Materials & Interfaces, 2013, 5, 1781.
106 Lv S, Li M, Tang Z, et al. Acta Biomaterialia, 2013, 9, 9330.
107 Yu S, Zhang D, He C, et al. Biomacromolecules, 2017, 18, 4341.
108 Chida T, Miura Y, Cabral H, et al. Journal of Controlled Release, 2018, 292, 130.
109 Mochida Y, Cabral H, Miura Y, et al. ACS Nano, 2014, 8, 6724.
110 Kukula H, Schlaad H, Antonietti M, et al. Journal of the American Chemical Society, 2002, 124, 1658.
111 Rodríguez-Hernández J, Lecommandoux S. Journal of the American Chemical Society, 2005, 127, 2026.
112 Koo A N, Min K H, Lee H J, et al. Biomaterials, 2012, 33, 1489.
113 Fan J, Zou J, He X, et al. Chemical Science, 2014, 5, 141.
114 Chang X, Liu L, Guan Y, et al. Journal of Polymer Science Part A:Po-lymer Chemistry, 2014, 52, 2000.
115 Ding J, Chen J, Li D, et al. Journal of Materials Chemistry B, 2013, 1, 69.
116 Takae S, Miyata K, Oba M, et al. Journal of the American Chemical Society, 2008, 130, 6001.
117 Zhao L, Xiao C, Ding J, et al. Polymer Chemistry, 2015, 6, 3807.
118 Zhang Y, Ding J, Li M, et al. ACS Applied Materials & Interfaces, 2016, 8, 10673.
119 Chen J, Ding J, Xu W, et al. Nano Letters, 2017, 17, 4526.
120 Zhang P, Zhang Y, Ding X, et al. Advanced Materials, 2020, 32, 2000013.
121 Miyata K, Kakizawa Y, Nishiyama N, et al. Journal of the American Chemical Society, 2004, 126, 2355.
122 Dai J, Lin S, Cheng D, et al. Angewandte Chemie International Edition, 2011, 50, 9404.
123 Wu L, Zou Y, Deng C, et al. Biomaterials, 2013, 34, 5262.
124 Huang K, Shi B, Xu W, et al. Acta Biomaterialia, 2015, 27, 179.
125 Guo H, Xu W, Chen J, et al. Journal of Controlled Release, 2017, 259, 136.
126 Chen J, Ding J, Wang Y, et al. Advanced Materials, 2017, 29, 1701170.
127 Xiong M, Bao Y, Xu X, et al. Proceedings of the National Academy of Sciences, 2017, 114, 12675.
[1] 李家奇, 窦红静. 人工细胞的构筑及生物医学应用[J]. 材料导报, 2025, 39(5): 24080236-13.
[2] 王环江, 杨启亮, 张雨晨, 吴珠玉, 吕昱, 周国永, 任嗣利. 芳香性聚氨基酸破乳剂的制备及性能评价[J]. 材料导报, 2024, 38(12): 22040309-9.
[3] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[4] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[5] 马艳,李智,冉瑞龙,李康. 蚕丝在生物医用材料领域的应用研究[J]. 《材料导报》期刊社, 2018, 32(1): 86-92.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed