Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22040309-9    https://doi.org/10.11896/cldb.22040309
  高分子与聚合物基复合材料 |
芳香性聚氨基酸破乳剂的制备及性能评价
王环江1,*, 杨启亮1, 张雨晨1, 吴珠玉1, 吕昱1, 周国永1, 任嗣利2,*
1 贵州民族大学低维材料与大数据重点实验室,贵阳 550025
2 江西理工大学资源与环境工程学院,江西省矿业工程重点实验室,江西 赣州 341000
Synthesis and Evaluation of Aromatic Poly(amino acids) Demulsifiers
WANG Huanjiang1,*, YANG Qiliang1, ZHANG Yuchen1, WU Zhuyu1, LYU Yu1, ZHOU Guoyong1, REN Sili2,*
1 Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guiyang 550025, China
2 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Key Laboratory of Mining Engineering of Jiangxi Pro-vince, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 20406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以芳香族氨基酸苯丙氨酸为疏水单体、脂肪族氨基酸天冬氨酸为亲水单体,通过氨基酸N-羧基环内酸酐(NCA)单体的开环聚合(ROP),制备了一系列强极性、高芳香度的聚氨基酸类高分子破乳剂聚苯丙氨酸-聚天冬氨酸苄酯(PPA-b-PBAA),并对产物进行了结构表征和相对分子质量测定。采用瓶试法评价了 PPA-b-PBAA 的破乳性能,结果表明 PPA-b- PBAA 具有优秀的低温破乳效率, 室温下 2 min 内能高效分离 pH=6.0~11.0、含油量 1.0%~10.0% (质量分数)的稀释沥青乳状液。 其中,PPA-b-PBAA对1.0%(质量分数)的含油乳化废水的最佳脱水效率达到了99.98%,相应脱出水中残余油含量低至8.50 mg/L。破乳机理研究表明,PPA-b-PBAA加入油水乳状液后能快速迁移到达油水界面,通过与形成油水界面膜的沥青质、胶质相互作用,促使分散油滴絮凝聚并,实现油水分离。量子化学计算和弱相互作用分析表明,破乳剂PPA-b-PBAA分子与形成油水界面膜的主要成分沥青质之间产生的强相互作用有利于加速油水界面膜破裂和分散油滴聚并,是助推PPA-b-PBAA低温高效快速破乳脱水的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王环江
杨启亮
张雨晨
吴珠玉
吕昱
周国永
任嗣利
关键词:  油-水分离  聚氨基酸  芳香性高分子  破乳剂  破乳机理    
Abstract: A series of high-performance aromatic and amphiphilic polyamides poly(L-phenylalanine)-block-poly (L-asparticacid-benzyl ester) (PPA-b-PBAA) demulsifiers were synthesized by the ring opening polymerization (ROP) of hydrophobic phenylalanine and hydrophilic aspartic acid N-carboxyanhydrides (NCA) monomer. The structure and molecular weight of the PBAA were characterized and gel permeation chromatography (GPC). The demulsification performance of PPA-b-PBAA demulisifers was evaluated by bottle test. The results showed that PPA-b-PBAA shows excellent low temperature demulsification capability, which can effectively separate oil in water emulsions with pH=6.0—11.0 and oil content of 1.0wt%—10.0wt% within 2 min at room temperature. The best demulsification efficiency of PPA-b-PBAA for treating 1.0wt% emulsion was as high 99.98%, corresponding to the residual oil content in the separated water was as low as 8.50 mg/L. The demulsification mechanism study indicated that when PPA-b-PBAA adding into the emulsion, which not only can quickly migrate to oil-water interface, and interact with and/or displace the stabilizers (asphaltenes/resins) of the emulsion. Finally, promote the dispersion of oil drops through flocculation and achieve oil and water separation. The interaction behavior between PPA-b-PBAA and asphaltenes was investigated by quantum chemical calculation and non-covalent interactions analysis (NCIs). The results revealed that PPA-b-PBAA has a stronger adsorbability for asphaltene molecules by van der Waals force. Due to the strong interaction between the demulsifiers and the asphaltenes, the protective film stabilizing the oil-in-water emulsion was more easily destroyed, thus promoting the oil droplets to coalesce to realize the separation of oil from water at room temperature.
Key words:  oil-water separation    poly(amino acids)    aromatic polymers    demulsifier    demulsification mechanism
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TH39  
基金资助: 国家自然科学基金(22262008;22078138);贵州省自然科学基金(ZK[2021]一般051);全国大学生创新创业项目(202051020102;S202110672045)
通讯作者:  *王环江,贵州民族大学副教授。2008年毕业于兰州城市学院,2013年毕业于西北师范大学物理化学专业,获理学硕士学位。2017年毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位。主持国家自然科学基金1项,贵州省级基金项目2项,教育厅项目1项,发表学术论文10余篇。主要研究方向为胶体与界面化学。whj2017@gzmu.edu.cn
任嗣利,江西理工大学“清江学者”特聘教授。2004年3月于中科院兰州化学物理研究所获理学博士学位,目前主要从事矿物工程与物质分离及环境科学与工程相关领域研究工作,在油砂矿分离技术、水污染控制以及表面/界面行为与调控等方面具有较为深厚的研究基础。发表研究论文50余篇,期中SCI论文30余篇;授权中国发明专利1件。slren@jxust.edu.cn   
引用本文:    
王环江, 杨启亮, 张雨晨, 吴珠玉, 吕昱, 周国永, 任嗣利. 芳香性聚氨基酸破乳剂的制备及性能评价[J]. 材料导报, 2024, 38(12): 22040309-9.
WANG Huanjiang, YANG Qiliang, ZHANG Yuchen, WU Zhuyu, LYU Yu, ZHOU Guoyong, REN Sili. Synthesis and Evaluation of Aromatic Poly(amino acids) Demulsifiers. Materials Reports, 2024, 38(12): 22040309-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040309  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22040309
1 Jia C Z. Acta Petrolei Sinica, 2020, 41(12), 1445 (in Chinese).
贾承造. 石油学报, 2020, 41(12), 1445.
2 Hu W R, Bao J W. Journal of China University of Petroleum, 2018, 42(4), 1 (in Chinese).
胡文瑞, 鲍敬伟. 中国石油大学学报(自然科学版), 2018, 42(4), 1.
3 Liu J, Zhao Y P, Hu B, et al. Chemical Industry and Engineering Progress, 2013, 32(4), 891 (in Chinese).
刘娟, 赵亚溥, 胡斌, 等. 化工进展, 2013, 32(4), 891.
4 Wang D, Yang D L, Huang C, et al. Fuel, 2021, 286, 119390.
5 Zolfaghari R, Fakhru'l-Razi A, Abdullah L C, et al. Separation and Purification Technology, 2016, 170, 377.
6 Sun N N, Sun H N, Shen L N, et al. Chemical Industry and Engineering Progress, 2022, 41(6), 3127 (in Chinese).
孙娜娜, 孙会娜, 沈莉莎, 等. 化工进展, 2022, 41(6), 3127.
7 Hu G J, Li J B, Zeng G M. Journal of Hazardous Materials, 2013, 261, 470.
8 Raya S A, Saaid I M, Ahmed A A, et al. Journal of Petroleum Exploration and Production Technology, 2020, 10(4), 1711.
9 Zhang Z J, Feng X M, Zeng G X, et al. Energy & Fuels, 2021, 35(4), 3095.
10 Xu Y M, Wu J Y, Dabros T, et al. The Canadian Journal of Chemical Engineering, 2004, 82(4), 829.
11 Liu J, Li X C, Liu J, et al. Journal of Dispersion Science and Technology, 2020, 41(13), 1991.
12 Wang H J, Yang Q L, Zhang Y C, et al. Materials Reports, 2023, 37(4), 21070242 (in Chinese).
王环江, 杨启亮, 张雨晨, 等. 材料导报, 2023, 37(4), 21070242.
13 Wang T, Yang D L, Huang C, et al. Fuel, 2021, 286(1), 119390.
14 Nguyen D, Balsamo V, Phan J. Energy & Fuels, 2014, 28(3), 1641.
15 Wang D L, Lin M Q, Dong Z X, et al. Energy & Fuels, 2016, 30(3), 1947.
16 Abdulredha M M, Aslina H S, Luqman C A, et al. Arabian Journal of Chemistry, 2020, 13(1), 3403.
17 Hoque J, Gonuguntla S, Yarlagadda V, et al. Physical Chemistry Chemical Physics 2014, 16, 11279.
18 Wang H J, Liu J, Xu H Y, et al. RSC Advances, 2016, 6, 106297.
19 Liu J, Wang H J, Li X C, et al. Fuel, 2017, 189(1), 79.
20 Wang H J, Xu H Y, Jia W H, et al. Energy & Fuels, 2017, 31(3), 2488.
21 Wang H J, Xu H Y, Jia W H, et al. Journal of Dispersion Science and Technology, 2018, 39(4), 497.
22 Mahjour B, Shen Y N, Liu W B, et al. Nature, 2020, 580, 71.
23 Tian Z Y, Zhang Z C, Wang S, et al. Nature Communications, 2018, 39(4), 497.
24 Liu H, Cheng Y L, Chen J J, et al. Acta Biomaterialia, 2018, 73, 103.
25 Park S B, Sung M H, Uyama H, et al. Progress in Polymer Science, 2021, 113, 101341.
26 Kim M S, Dayananda K, Choi E K, et al. Polymer, 2009, 50(10), 2252.
27 Feng X H, Xu Z H, Masliyah J. Energy & Fuels, 2009, 23(1), 451.
28 Neese F, Wenmohs F, Beckerr U, et al. The Journal of Chemical Phy-sics, 2020, 152(22), 224108.
29 Martinez L, Andrade R, Birgin E G, et al. Journal of Computational Chemistry, 2009, 30(13), 2157.
30 Liu R Z, Shang F J, Xiong Y, et al. Physical Chemistry Chemical Phy-sics, 2021, 23, 20718.
31 Lu T, Chen F W. Journal of Computational Chemistry, 2012, 33(5), 580.
32 Humphrey W, Dalke A, Schukten K. Journal of Molecular Graphics, 1996, 14(1), 33.
33 Bossion A, Nicolas J. European Polymer Journal, 2020, 140(5), 110033.
34 Wang K, Luo G F, Liu Y, et al. Polymer Chemistry, 2012, 3, 1084.
35 Liu W F, Li L H, Qiao P, et al. Journal of International Pharmaceutical Research, 2016, 43(4), 718 (in Chinese).
刘伟芬, 李禄辉, 乔鹏, 等. 国际药学研究杂志, 2016, 43(4), 718.
36 Hou S S, Fan N S, Tseng Y C, et al. Macromolecules, 2018, 51(20), 8054.
[1] 王环江, 杨启亮, 张雨晨, 徐磊, 刘娟, 任嗣利. 原位接枝纳米炭黑水包油型破乳剂制备与性能评价[J]. 材料导报, 2023, 37(4): 21070242-6.
[2] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[3] 毕研刚, 许泽军, 贾欣茹, 李雁, 李武松, 刘聪聪. 树枝状和超支化聚酰胺-胺在我国油田化学的应用进展*[J]. 《材料导报》期刊社, 2017, 31(13): 63-68.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed