Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010082-9    https://doi.org/10.11896/cldb.24010082
  高分子与聚合物基复合材料 |
聚脲材料的优化及抗爆抗侵彻性能研究进展
丁来龙, 马明亮*, 冯超, 黄微波, 王一凡, 林佳宇, 吴超
青岛理工大学土木工程学院,山东 青岛 266520
Advances in Optimization of Polyurea Materials and Their Anti-explosion and Anti-invasion Properties
DING Lailong, MA Mingliang*, FENG Chao, HUANG Weibo, WANG Yifan, LIN Jiayu, WU Chao
School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
下载:  全 文 ( PDF ) ( 29381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚脲弹性体的分子结构独特,具有优异的力学性能和良好的吸能特性,在提升基体的抗爆抗侵彻性能方面有显著的效果。本文对聚脲弹性体在防护领域的研究进展进行了全面梳理,主要围绕配方优化、防护结构应用以及吸能机理三个方面开展论述,并进行了深入的系统性分析。此外,本文归纳了聚脲弹性体研究中存在的问题,为其进一步的研究、应用以及新型防护结构设计提供了有益参考,对开展聚脲复合结构的抗爆抗侵彻研究具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁来龙
马明亮
冯超
黄微波
王一凡
林佳宇
吴超
关键词:  聚脲弹性体  结构特征  力学性能  抗爆抗侵彻  防护机理    
Abstract: The unique molecular structure of polyurea elastomers contributes to their exceptional mechanical properties and energy-absorbing characte-ristics, significantly enhancing the anti-explosion and anti-invasion penetration performance of the substrate. The research progress of pol-yurea elastomers in the field of protection is comprehensively sorted out, mainly focusing on the optimization of formulations, the application of protective structures and the mechanism of energy-absorbing, and an in-depth systematic analysis is carried out. In addition, the problems exis-ting in the research of polyurea elastomer are summarized, which provides useful references for the further study and application of polyurea elastomer as well as the design of new protective structures, and is of great significance for the research of anti-explosion and anti-invasion penetration of protective structures.
Key words:  polyurea elastomer    structural characteristic    mechanical property    anti-explosion and anti-invasive    protection mechanism
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TB324  
  O383  
基金资助: 山东省自然科学基金(ZR2021ME019)
通讯作者:  *马明亮,博士,青岛理工大学土木工程学院教授、博士研究生导师。目前从事材料科学与工程领域的设计理论与工程应用研究,特别是在吸波、阻燃、高性能防护材料等新型功能材料的结构设计、制备及应用方面。mamingliang@qut.edu.cn   
作者简介:  丁来龙,青岛理工大学土木工程学院硕士研究生,目前主要研究领域为复合材料抗爆抗冲击。
引用本文:    
丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
DING Lailong, MA Mingliang, FENG Chao, HUANG Weibo, WANG Yifan, LIN Jiayu, WU Chao. Advances in Optimization of Polyurea Materials and Their Anti-explosion and Anti-invasion Properties. Materials Reports, 2025, 39(4): 24010082-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010082  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010082
1 Li G Q, Hou R, Hu G X, et al. Engineering Plastics Application, 2019, 47(9), 163 (in Chinese).
李桂群, 侯瑞, 胡国祥, 等. 工程塑料应用, 2019, 47(9), 163.
2 Huang W B, Song Y L, Mang M L, et al. Engineering Plastics Applications, 2019, 47(1), 148 (in Chinese).
黄微波, 宋奕龙, 马明亮, 等. 工程塑料应用, 2019, 47(1), 148.
3 Iqbal N, Tripathi M, Parthasarathy S, et al. RSC Advances, 2016, 6, 109706.
4 Guo G J, Chen C Y, Wang X M, et al. China Surface Engineering, 2021, 34(6), 1 (in Chinese).
郭国吉, 陈彩英, 王向明, 等. 中国表面工程, 2021, 34(6), 1.
5 Cai J F, Li S J, Yan J, et al. Journal of Ordnance Equipment Engineering, 2021, 42(8), 112 (in Chinese).
蔡军锋, 李少杰, 闫军, 等. 兵器装备工程学报, 2021, 42(8), 112.
6 Grujicic M, He T, Pandurangan B, et al. Journal of Materials Engineering and Performance, 2012, 21, 2.
7 Zhai W, Chen Q, Zhen J J, et al. Engineering Plastics Applications, 2012, 40(10), 28 (in Chinese).
翟文, 陈强, 甄建军, 等. 工程塑料应用, 2012, 40(10), 28.
8 Gong C C, Chen Y, Dai L H, et al. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1), 1 (in Chinese).
龚臣成, 陈艳, 戴兰宏, 等. 力学学报, 2023, 55(1), 1.
9 Wang X, Lyu P, Yan S, et al. Materials Protection, 2022, 55(8), 150 (in Chinese).
王旭, 吕平, 闫帅, 等. 材料保护, 2022, 55(8), 150.
10 Holzworth K, Jia Z, Amirkhizi A, et al. Polymer, 2013, 54, 3079.
11 Iqbal N, Tripathi M, Parthasarathy S, et al. Construction and Building Materials, 2018, 175, 682.
12 Das S, Yilgor I, Yilgor E, et al. Polymer, 2007, 48, 290.
13 Iqbal N, Kumar D, Roy P K. Journal of Applied Polymer Science, 2018, 135, 45869.
14 Shahi V, Alizadeh V, Amirkhizi A V, Mechanics of Time-Dependent Materials, 2020, 25, 447.
15 Toader G, Moldovan A E, Diacon A, et al. Polymers, 2023, 15, 756.
16 Iqbal N, Tripathi M, Parthasarathy S, et al. Chemistry Select, 2018, 3, 1976.
17 Liu Z Y, Song W, Hao J M, et al. Journal of Materials Science and Engineering, 2009, 27(3), 397 (in Chinese).
刘宗瑜, 宋蔚, 郝敬梅, 等. 材料科学与工程学报, 2009, 27(3), 397.
18 Iqbal N, Tripathi M, Parthasarathy S, et al. Progress in Organic Coa-tings, 2018, 123, 201.
19 Tripathi M, Parthasarathy S, Kumar D, et al. Polymer Testing, 2020, 86, 106488.
20 Zhang R, Huang W B, Lyu P, et al. Polymers, 2022, 14, 17.
21 Wang Y, Song H J, Xie S X. Materials Reports, 2015, 29(6), 11 (in Chinese).
王勇, 宋慧娟, 谢绍祥. 材料导报, 2015, 29(6), 11.
22 Sun P F, Lyu P, Wang X. New Chemical Materials, 2023, 51(1), 156 (in Chinese).
孙鹏飞, 吕平, 王旭, 等. 化工新型材料, 2023, 51(1), 156.
23 Barczewski M, Biedrzycka K, Szostak M, et al. Plastics, Rubber and Composites, 2021, 50, 276.
24 Qian X, Song L, Tai Q, et al. Composites Science and Technology, 2013, 74, 228.
25 Qiao J, Wu G. Journal of Materials Science, 2011, 46, 3935.
26 Qiao J, Wu Y, Li L. Polymer Testing, 2020, 81, 106168.
27 Ma J, Gao X T, Wu W F. Paint & Coatings Industry, 2010, 40(11), 24 (in Chinese).
马金, 高新田, 吴伟锋. 涂料工业, 2010, 40(11), 24.
28 Lyu P, Fang Z Q, Wang X, et al. Materials, 2022, 15, 2607.
29 Lin G J, Fu T F, Qiu Y N, et al. Progress in Organic Coatings, 2023, 180, 107554.
30 Huang W B, Zhang R, Wang X, et al. Polymers, 2022, 14, 3458.
31 Sun P F, Lyu P, Wang X, et al. Materials Reports, 2021, 35(S2), 642 (in Chinese).
孙鹏飞, 吕平, 黄微波, 等. 材料导报, 2021, 35(S2), 642.
32 Liu B H, Xu W L, Wang C, et al. Acta Armamentarii, DOI: 10.12382/bgxb.2023.0090 (in Chinese).
刘保华, 徐文龙, 王成, 等. 兵工学报, DOI: 10.12382/bgxb.2023.0090.
33 Zhang L, Cheng L Y, Ji C, et al. Initiators & Pyrotechnics, 2022(3), 21 (in Chinese).
张龙, 程良玉, 纪冲, 等. 火工品, 2022(3), 21.
34 Amini M R, Isaacs J, Nemat-Nasser S. Mechanics of Materials, 2010, 42, 628.
35 Zhang P, Wang Z J, Zhao P D, et al. Thin-Walled Structures, 2019, 144, 106342.
36 Deng X M, Wu H J, Zhu X L, et al. Acta Armamentarii, 2017, 38(S1), 60 (in Chinese).
邓希旻, 武海军, 朱学亮, 等. 兵工学报, 2017, 38(S1), 60.
37 Zhao Q M, Shi S Q, Li J, et al. Journal of Weapons and Equipment Engineering, 2020, 41(8), 214 (in Chinese).
赵启明, 石少卿, 李季, 等. 兵器装备工程学报, 2020, 41(8), 214.
38 Ma Y Y, Zhao L, Wu C, et al. Journal of Ordnance Equipment Engineering, 2019, 40(6), 82 (in Chinese).
马洋洋, 赵磊, 吴成, 等. 兵器装备工程学报, 2019, 40(6), 82.
39 Gauch E, LeBlanc J, Shillings C, et al. Conference Proceedings of the Society for Experimental Mechanics Series, 2017, 2, 153.
40 Zhao P D, Jia Z J, Wang Z J, et al. China Journal of Ship Research, 2019, 14(4), 7 (in Chinese).
赵鹏铎, 贾子健, 王志军, 等. 中国舰船研究, 2019, 14(4), 7.
41 Liao Y, Shi S Q, Liang C K, et al. Acta Armamentarii, 2018, 39(10), 1988 (in Chinese).
廖瑜, 石少卿, 梁朝科, 等. 兵工学报, 2018, 39(10), 1988.
42 Gardner N, Wang E, Kumar P, et al. Experimental Mechanics, 2012, 52, 119.
43 Liu Q, Guo B Q, Chen P W, et al. Thin-Walled Structures, 2021, 166, 108111.
44 Chen F, Tewodros Y Y, Daniel G L, et al. Materials, 2023, 16, 3784.
45 Grujicic M, Ramaswami S, Snipes J S, et al. Multidiscipline Modeling in Materials and Structures, 2016, 12, 33.
46 Si P, Liu Y, Yan J B, et al. Materials, 2022, 15, 3918.
47 Li T, Zhang C, Xie Z, et al. Polymer, 2018, 145, 261.
48 Grujicic M, Pandurangan B, Runt J, et al. Journal of Materials Engineering and Performance, 2011, 21, 2024.
49 Yeh F, Hsiao B S, Sauer B B, et al. Macromolecules, 2003, 36, 1940.
50 Sheth J P, Aneja A, Wilkes G L, et al. Polymer, 2004, 45, 6919.
51 Manav M, Ortiz M. Polymer, 2021, 212, 123109.
52 Li Y, Chen C, Hou H, et al. Polymers, 2019, 11, 1888.
53 Zhang L, Ji C, Wang X, et al. Thin-Walled Structures, 2022, 178, 109527.
54 Wu G, Ji C, Wang X, et al. Defence Technology, 2022, 18, 643.
55 Ransom T C, Ahart M, Hemley R J, et al. Macromolecules, 2017, 50, 8274.
56 Wang W B, Lyu P, Jyu J H, et al. Paint & Coatings Industry, DOI: 10.12020/j.issn.0253-4312.2023-171 (in Chinese).
王文斌, 吕平, 鞠家辉, 等. 涂料工业, DOI: 10.12020/j.issn.0253-4312.2023-171.
57 Yan S, Lyu P, Huang W B, et al. Materials Reports, 2024, 38(19), 1 (in Chinese).
闫帅, 吕平, 黄微波, 等. 材料导报, 2024, 38(19), 1.
58 Wu G, Wang X, Ji C, et al. Thin-Walled Structure, 2021, 164, 107842.
59 Gamache R M, Giller C B, Montella G, et al. Materials & Design, 2016, 111, 362.
60 Zheng T, Zhang Y, Shi J, Xu J, et al. Molecular Simulation, 2021, 47, 1258.
61 Yao K, Liu Z, Li T, et al. Polymer, 2020, 202, 122741.
[1] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[2] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[3] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[4] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[8] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[9] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[13] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[14] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[15] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed