Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110239-7    https://doi.org/10.11896/cldb.23110239
  无机非金属及其复合材料 |
半包覆锰基复合锂离子筛的制备与吸附性能
刘平1, 王晨1, 韩庆文2, 苗攀1, 马家玉1,*
1 武汉工程大学化工与制药学院,武汉 430205
2 湖北三峡实验室,湖北 宜昌 443000
Preparation and Adsorption Performance of Semi-coated Manganese-based Composite Lithium Ion-Sieve
LIU Ping1, WANG Chen1, HAN Qingwen2, MIAO Pan1, MA Jiayu1,*
1 School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
2 Hubei Three Gorges Laboratory, Yichang 443000, Hubei, China
下载:  全 文 ( PDF ) ( 9612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸附法是提取液体锂资源的一个重要方法,其中锰基离子筛吸附剂具有很大的应用潜力。但锰基离子筛仍然存在制备方法复杂、Mn溶损率高等技术问题。本工作采用固相法制备了Li4Mn5O12·Li2MnO3锰基复合前驱体,对合成的前驱体进行了XRD、SEM、TEM、XPS、热重、比表面积和孔径分析表征,研究了半包覆锰基复合锂离子筛对液体中Li+的吸附性能和循环稳定性。结果表明,Li4Mn5O12与Li2MnO3以多相共生的方式结合,构建的半包覆结构增加了锂离子筛的稳定性。而半包覆锰基复合锂离子筛吸附Li+符合单分子层化学吸附,温度升高有利于吸附的进行。半包覆锰基复合锂离子筛的吸附容量为26.51 mg/g,五次循环后吸附容量仅损失3.82%,而未包覆的锂离子筛吸附容量损失高达12.6%。同时,五次循环后Mn溶损率仅为0.83%,明显低于未包覆锂离子筛(2.06%)。本工作制备的半包覆锰基复合锂离子筛有望用于液体锂资源的提取。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘平
王晨
韩庆文
苗攀
马家玉
关键词:  锰基复合锂离子筛  半包覆结构  Mn溶损  吸附性能    
Abstract: The adsorption method is an important method for extracting liquid lithium resources, among which manganese-based ion-sieve adsorbent has great application potential. However, there are still some technical problems such as complex preparation methods and a high Mn dissolution loss rate. In this work, a composite precursor of Li4Mn5O12·Li2MnO3 was prepared by solid-phase method. The synthesized precursor was analyzed and characterized by XRD, SEM, TEM, XPS, thermostats, specific surface area and pore size, and the adsorption performance and cycle stability of Li+ in liquid by the semi-coated Mn-based composite lithium ion-sieve were studied. The results showed that Li4Mn5O12 and Li2MnO3 combine in polyphase symbiosis, and the semi-coated structure increases the stability of the lithium ion-sieve. The adsorption of Li+ by a semi-coated Mn-based composite lithium ion-sieve is chemical monolayer adsorption, and the increase in temperature is beneficial to the adsorption process. The adsorption capacity of the semi-coated Mn-based composite lithium ion-sieve is 26.51 mg/g, and the adsorption capacity loss is only 3.82% after five cycles, while that of the uncoated lithium ion-sieve is as high as 12.6%. Meanwhile, the Mn dissolution loss rate is only 0.83% after five cycles, which is significantly lower than that of the uncoated lithium ion-sieve (2.06%). The semi-coated Mn-based composite lithium ion-sieve prepared in this work is expected to be used for the extraction of liquid lithium resources.
Key words:  Mn-based composite lithium ion-sieve    semi-coated structure    Mn dissolution loss    adsorption performance
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  O647.3  
基金资助: 国家重点研发计划“固废资源化”专项(2019YFC1905803);湖北省重点研发计划项目(2022BCA086);湖北三峡实验室创新基金(SC211016);武汉工程大学研究生教育创新基金(X2022022)
通讯作者:  *马家玉,武汉工程大学化工与制药学院副教授、硕士研究生导师。目前主要从事磷化工、从低品位多金属矿及固体废物中提取有色金属(钾、铝、锂)的基础及应用基础研究工作。majiayu1982@126.com   
作者简介:  刘平,现为武汉工程大学化工与制药学院硕士研究生,在马家玉副教授的指导下进行研究。目前主要研究领域为吸附材料合成与应用。
引用本文:    
刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
LIU Ping, WANG Chen, HAN Qingwen, MIAO Pan, MA Jiayu. Preparation and Adsorption Performance of Semi-coated Manganese-based Composite Lithium Ion-Sieve. Materials Reports, 2025, 39(4): 23110239-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110239  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110239
1 Tang J, Wang J, Chu Y, et al. Multipurpose Utilization of Mineral Resources, 2023(6), 71 (in Chinese).
唐珏, 王俊, 储瑶, 等. 矿产综合利用, 2023(6), 71.
2 Gao T M, Fan N, Dai T. Acta Metallurgica Sinica, DOI: 10.19762/j.cnki.dizhixuebao.2023047 (in Chinese).
高天明, 范娜, 代涛. 地质学报, DOI: 10.19762/j.cnki.dizhixuebao.2023047.
3 Zhu R S, Cao J, Liu T R, et al. Inorganic Chemicals Industry, 2023, 55(11), 1 (in Chinese).
朱瑞松, 曹靖, 刘陶然, 等. 无机盐工业, 2023, 55(11), 1.
4 Zhang G, Zhang J, Zhou Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123950.
5 Jin J Q, Li Y, Lin S. Chemical Engineering, 2023, 51(5), 20 (in Chinese).
靳佳奇, 李岩, 林森. 化学工程, 2023, 51(5), 20.
6 Weng D, Duan H, Hou Y, et al. Progress in Natural Science: Materials International, 2020, 30(2), 139.
7 Chitrakar R, Kanoh H, Miyai Y, et al. Chemistry of Materials, 2000, 12(10), 3151.
8 Zhu G, Wang P, Qi P, et al. Chemical Engineering Journal, 2014, 235, 340.
9 Riofrancos T. Global Environmental Politics, 2023, 23(1), 20.
10 Yu H, Naidu G, Zhang C, et al. Desalination, DOI: 10.1016/j.desal.2022.115951.
11 Liu D F, Sun S Y, Yu J G. CIESC Journal, 2018, 69(1), 141 (in Chinese).
刘东帆, 孙淑英, 于建国. 化工学报, 2018, 69(1), 141.
12 Tan T Y, Kennedy B J, Zhou Q, et al. Physical Review B, 2012, 85(10), 1311.
13 Li L, Qu W, Liu F, et al. Applied Surface Science, 2014, 315, 59.
14 Ohashi F, Tai Y. Materials Letters, 2019, 251, 214.
15 Ji Z Y, Sun B Y, Yuan J S, et al. Materials Reports, 2016, 30(13), 17 (in Chinese).
纪志永, 孙步云, 袁俊生, 等. 材料导报, 2016, 30(13), 17.
16 Yang X Y, Cao G F, Hu C J, et al. Materials Reports, 2017, 31(S1), 435 (in Chinese).
杨喜云, 曹改芳, 胡长军, 等. 材料导报, 2017, 31(S1), 435.
17 Tang W, Kanoh H, Yang X, et al. Chemistry of Materials, 2000, 12(11), 3271.
18 Tanaka Y, Zhang Q, Saito F. Powder Technology, 2003, 132(1), 74.
19 Thackeray M, Mansuetto M, Johnson C. Journal of Solid State Chemistry, 1996, 125(2), 274.
20 Gu D, Sun W, Han G, et al. Chemical Engineering Journal, 2018, 350, 474.
21 Li Y, Makita Y, Lin Z, et al. Solid State Ionics, 2011, 196(1), 34.
22 Long B R, Croy J R, Dogan F, et al. Chemistry of Materials, 2014, 26(11), 3565.
23 Riekehr L, Liu J, Schwarz B, et al. Journal of Power Sources, 2016, 325, 391.
24 Cao J, Xie J, Cao G, et al. Electrochimica Acta, 2013, 111, 447.
25 Nesbitt H W, Banerjee D. American Mineralogist, 1998, 83(3-4), 305.
26 Bao L R, Zhang J Z, Tang W P, et al. Desalination, 2023, 546, 116196.
27 Sun J, Li X, Huang Y, et al. Chemical Engineering Journal, 2023, 453(1), 139485.
28 Bian W B, Zhang R X, Pan J M. Chemical Industry and Engineering Progress, DOI: 10.16085/j.issn.1000-6613.2023-1129 (in Chinese).
卞维柏, 张睿轩, 潘建明. 化工进展, DOI: 10.16085/j.issn.1000-6613.2023-1129.
29 Sizochenko N, Mikolajczyk A, Syzochenko M, et al. NanoImpact, 2021, 22, 100317.
30 Feng Q, Kanoh H, Miyai Y, et al. Chemistry of Materials, 1995, 7(1), 148.
31 Wang L, Wang L, Bai Y L, et al. CIESC Journal, 2023, 74 (5), 2046 (in Chinese).
王蕾, 王磊, 白云龙, 等. 化工学报, 2023, 74 (5), 2046.
[1] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[2] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[3] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[4] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[5] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[6] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[7] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[8] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[9] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[10] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[11] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[12] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[13] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed