Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24050187-7    https://doi.org/10.11896/cldb.24050187
  金属与金属基复合材料 |
激光选区熔化制备M50NiL轴承钢回收粉末特性的变化
王真帅1, 李继文1,*, 张欣1, 李顺杰1, 刘伟1,2, 徐流杰1,3
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 有色金属新材料及先进加工技术省部共建协同创新中心,河南 洛阳 471023
3 金属材料磨损控制与成型技术国家地方联合工程研究中心,河南 洛阳 471003
Characterization of M50NiL Bearing Steel Recycled Powder in the Selective Laser Melting
WANG Zhenshuai1, LI Jiwen1,*, ZHANG Xin1, LI Shunjie1, LIU Wei1,2, XU Liujie1,3
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National Joint Collaborative Innovation Center for Nonferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
3 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, Henan, China
下载:  全 文 ( PDF ) ( 48494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以激光选区熔化(Selective laser melting,SLM)为代表的粉床熔融增材制造技术因其成型精度高、成型件表面质量好而被广泛应用于航空航天、生物医学和汽车制造领域。但SLM工艺仅有10%~20%金属粉体用于零件的制造,大量的金属粉末必须回收再利用。制造过程中受激光、熔池等复杂热历史因素的影响,回收粉粒径、表面形貌、化学成分、流动性等特性会发生改变。本工作以M50NiL轴承钢金属粉末为研究对象,采用扫描电镜、氧氮分析仪、激光粒度分析仪和X射线衍射仪等分析手段,对原始粉和回收粉的显微形貌、物相组成、氮氧含量、粒径分布以及流动性等特征参数的变化进行了分析与研究。结果表明:与原始粉相比,回收粉细粒径体积分数减少,粗粒径粉末颗粒增多,回收粉表现出更好的流动性;回收粉体中出现表面不光滑颗粒,存在包括粉体团聚、部分熔融、部分/完全氧化、金属蒸气冷凝和飞溅熔滴等不规则颗粒;回收粉末中氧含量随着使用次数增加稳步上升,氮含量基本不变;回收粉末的物相没有改变,但粉末的晶面间距和结晶度增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王真帅
李继文
张欣
李顺杰
刘伟
徐流杰
关键词:  激光选区熔化  M50NiL钢  回收粉末  粉末再利用  粉末特性    
Abstract: As the representative of powder bed melting additive manufacturing technology, selective laser melting (SLM) has been widely used in aerospace, biomedical and automotive manufacturing fields due to its high forming precision and the surface quality of the forming parts. However, only 10%—20% of the metal powder is used for part manufacturing in SLM processes, and a large amount of metal powder must be recycled for reuse. Recycled powder is subjected to various factors such as laser irradiation and complex thermal histories during the manufacturing process, leading to changes in its characteristics such as particle size, surface morphology, chemical composition and flowability. In this work, taking the metal powder of M50NiL bearing steel as the research object, the changes in microstructure, phase composition, nitrogen and oxygen content, particle size distribution and flowability between the virgin and recycled powder were analyzed by means of scanning electron microscopy, oxygen and nitrogen analyzer, laser particle size analyzer and X-ray diffraction. The results showed that compared with the original powder, the volume fraction of fine particle size of recovered powder decreased, and the particle size of coarse particle size increased. Recycled powder exhibits better flowability than the virgin powder. Irregular particles with non-smooth surfaces, including agglomerates, partially melted particles, partially/fully oxidized particles, condensed metal vapor and splatter droplets, are emerged in the recycled powder. The oxygen content gradually increases with the cycles, while the nitrogen content remains unchanged. The phase composition of the recycled powder is the same as that of the virgin, but the interplanar spacing and crystallinity increased.
Key words:  selective laser melting    M50NiL steel    recycled powder    powder reuse    powder characteristics
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TG665  
基金资助: 国家自然科学基金(U1804124)
通讯作者:  *李继文,河南科技大学材料科学与工程学院教授、博士研究生导师。现任河南科技大学军工研究院副院长。目前主要从事金属材料成形与加工技术研究工作。ljwzq@163.com   
作者简介:  王真帅,河南科技大学材料科学与工程学院硕士研究生,在李继文教授的指导下进行研究。目前主要从事金属材料增材制造技术研究。
引用本文:    
王真帅, 李继文, 张欣, 李顺杰, 刘伟, 徐流杰. 激光选区熔化制备M50NiL轴承钢回收粉末特性的变化[J]. 材料导报, 2025, 39(22): 24050187-7.
WANG Zhenshuai, LI Jiwen, ZHANG Xin, LI Shunjie, LIU Wei, XU Liujie. Characterization of M50NiL Bearing Steel Recycled Powder in the Selective Laser Melting. Materials Reports, 2025, 39(22): 24050187-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050187  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24050187
1 Li C L. Study on vacuumcarburizing processes of M50NiL steel. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
李长亮. M50NiL钢真空渗碳工艺研究. 哈尔滨工业大学, 2018.
2 Yang Y S, Wang B. Steel Rolling, 2020, 37(5), 35 (in Chinese).
杨雨松, 王斌. 轧钢, 2020, 37(5), 35.
3 Li J, Yan F, Wang J, et al. Powder Metallurgy Industry, 2024, 34(2), 116 (in Chinese).
李晶, 闫峰, 王锦, 等. 粉末冶金工业, 2024, 34(2), 116.
4 Liu C Y, Zhao B B, Li L J, et al. Powder Metallurgy Industry, 2020, 30(2), 83 (in Chinese).
柳朝阳, 赵备备, 李兰杰, 等. 粉末冶金工业, 2020, 30(2), 83.
5 Gaurav P, Hitesh V, Dharam B. International Journal on Interactive Design and Manufacturing, 2022, 17, 2221.
6 Uhlmann E, Bergmann A, Gridin W. Procedia CIRP, 2015, 35, 8.
7 Moghimian P, Poirié T, Habibnejad-Korayem M, et al. Additive Manufacturing, 2021, 43, 102017.
8 Zhao D L, Lin F. Chinese Journal of Mechanical Engineering, 2018, 29(17), 2100 (in Chinese).
赵德陈, 林峰. 中国机械工程, 2018, 29(17), 2100.
9 Gu D D, Zhang H M, Chen H Y, et al. Chinese Journal of Lasers, 2020, 47(5), 32 (in Chinese).
顾冬冬, 张红梅, 陈洪宇, 等. 中国激光, 2020, 47(5), 32.
10 Han T B, Zhang Y W, Tian X J, et al. Powder Metallurgy Industry, 2017, 27(6), 44 (in Chinese).
韩寿波, 张义文, 田象军, 等. 粉末冶金工业, 2017, 27(6), 44.
11 Mohd Y S, Choo E, Gao N. Metals, 2020, 10, 1625.
12 Powell D, Rennie A, Geekie L, et al. Journal of Cleaner Production, 2020, 268, 122077.
13 Sutton A T, Kriewall C S, Leu M C, et al. Additive Manufacturing, 2020, 32, 100904.
14 Simonelli M, Tuck C, Aboulkhair N T, et al. Metallurgical and Materials Transactions A, 2015, 46, 3842.
15 Liu Y, Yang Y Q, Mai S Z, et al. Materials & Design, 2015, 87, 797.
16 Slotwinski J A, Garboczi E J, Stutzman P E, et al. Journal of Research of the National Institute of Standards and Technology, 2014, 119, 460.
17 Heiden M J, Deibler L A, Rodelas J M, et al. Additive Manufacturing, 2019, 25, 84.
18 Grünberger T, Domröse R. Laser Technik Journal, 2015, 1, 45.
19 Matthews M J, Guss G, Khairallah S A, et al. Acta Materialia, 2016, 114, 33.
20 Ladewig A, Schlick G, Fisser M, et al. Additive Manufacturing, 2016, 10, 1.
21 Markl M, Körner C. Annual Review of Materials Research, 2016, 46, 93.
22 Sutton A T, Kriewall C S, Karnati S, et al. Additive Manufacturing, 2020, 32, 100981.
23 Groarke R, Danilenkoff C, Karam S, et al. Materials, 2020, 13, 5537.
24 Wu, Q, Qiao C, Wu Y, et al. Additive Manufacturing, 2023, 77, 103821.
25 Abd-Elghany K, Bourell D L. Rapid Prototyping Journal, 2012, 18, 420.
26 Zhou L J, Qiu W B, Xu P, et al. Powder Technology, 2024, 437, 119524.
[1] 倪小南, 王安森, 胡子健, 杨温鑫, 罗永康, 胡振杰, 邓欣. TiCN/AlSi10Mg复合材料激光选区熔化过程多物理场建模及数值模拟[J]. 材料导报, 2025, 39(15): 24070044-7.
[2] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[3] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[4] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[5] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[6] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[7] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[8] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[9] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[10] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[11] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[12] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed