Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090131-9    https://doi.org/10.11896/cldb.24090131
  金属与金属基复合材料 |
加载频率对EH36/EH690异种高强钢焊接接头腐蚀疲劳裂纹扩展行为的影响
王梦娜1, 高旭东2,*, 邵永波1, 朱海龙3, 杜栖云4
1 西南石油大学土木工程与测绘学院,成都 610500
2 西南石油大学机电工程学院,成都 610500
3 中国海洋石油集团有限公司,北京100010
4 中国石油天然气股份有限公司西南油气田分公司川西北气矿,四川 绵阳 621700
Effect of Loading Frequency on Corrosion Fatigue Crack Growth Behavior of EH36/EH690 Dissimilar High-strength Steel Welded Joints
WANG Mengna1, GAO Xudong2,*, SHAO Yongbo1, ZHU Hailong3, DU Xiyun4
1 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
3 China National Offshore Oil Corporation, Beijing 100010, China
4 China National Petroleum Corporation Southwest Oil and Gas Field Branch Northwest Sichuan Gas Mine, Mianyang 621700, Sichuan, China
下载:  全 文 ( PDF ) ( 30454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究海水全浸环境下加载频率对EH36/EH690异种高强钢焊接接头腐蚀疲劳裂纹扩展行为的影响规律,采用不同的加载频率(f=0.2,0.3,0.5和0.7 Hz)分别对靠近EH36母材的热影响区(HAZ36)材料、靠近EH690母材的热影响区(HAZ690)材料和焊缝区(WM)材料进行腐蚀疲劳裂纹扩展试验,得到了焊接接头不同区域材料的裂纹长度-疲劳寿命曲线和腐蚀疲劳裂纹扩展速率-应力强度因子幅值曲线。结果发现,海水腐蚀环境的存在显著加速了焊接接头的疲劳裂纹扩展速率。相同加载频率作用下,焊接接头不同区域材料在海水腐蚀环境中的腐蚀疲劳裂纹扩展速率(Corrosion fatigue crack growth rate,CFCGR)存在差异,表现为CFCGRHAZ36>CFCGRWM>CFCGRHAZ690。不同加载频率作用下,HAZ36、HAZ690和WM三个区域的材料均表现出加载频率越低CFCGR越高,疲劳寿命越短。微观断口分析表明,各工况紧凑拉伸(Compact tension,CT)试件的疲劳断口均为穿晶型准解理断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梦娜
高旭东
邵永波
朱海龙
杜栖云
关键词:  异种高强钢焊接接头  腐蚀疲劳裂纹扩展  加载频率  海水全浸  断口形貌    
Abstract: To investigate the effect of loading frequency on the corrosion fatigue crack growth behavior of EH36/EH690 dissimilar high-strength steel welded joints in a fully submerged seawater environment, corrosion fatigue crack growth tests were conducted at different loading frequencies (f=0.2, 0.3, 0.5, and 0.7 Hz) on the heat-affected zone (HAZ36) material near the EH36 base metal, the heat-affected zone (HAZ690) material near the EH690 base metal, and the weld metal (WM). The crack length-fatigue life curves and corrosion fatigue crack growth rate-stress intensity factor range curves were obtained for the materials in different regions of the welded joints. The results indicate that the presence of the seawater corrosion environment significantly accelerates the fatigue crack growth rate of the welded joints. Under the same loading frequency, the corrosion fatigue crack growth rates(CFCGR) vary in different regions of the welded joints in the seawater corrosion environment, with an order from largest to smallest of CFCGRHAZ36>CFCGRWM>CFCGRHAZ690. Under different loading frequencies, the materials in the HAZ36, HAZ690, and WM regions all exhibit a trend of higher corrosion fatigue crack growth rates and shorter fatigue life as the frequency decreases. Microscopic fracture surface analysis reveals that the fatigue fracture surfaces of CT specimens under all conditions display transgranular quasi-cleavage fracture characteristics.
Key words:  dissimilar high-strength steel welded joint    corrosion fatigue crack growth    loading frequency    seawater immersion    fracture morphology
发布日期:  2025-10-27
ZTFLH:  TG172.5  
基金资助: 国家自然科学基金(52401343;52078441)
通讯作者:  *高旭东,讲师,西南石油大学机械工程专业博士(博士后),主要从事海洋工程结构抗冲击性能、腐蚀疲劳裂纹扩展行为及机理、高低周疲劳行为、高强钢焊接残余应力及变形预测等方向的研究。gxdgao193@163.com   
作者简介:  王梦娜,2022年9月至今在西南石油大学土木工程与测绘学院攻读硕士学位,在邵永波教授的指导下进行研究。目前主要研究领域为疲劳与断裂。
引用本文:    
王梦娜, 高旭东, 邵永波, 朱海龙, 杜栖云. 加载频率对EH36/EH690异种高强钢焊接接头腐蚀疲劳裂纹扩展行为的影响[J]. 材料导报, 2025, 39(20): 24090131-9.
WANG Mengna, GAO Xudong, SHAO Yongbo, ZHU Hailong, DU Xiyun. Effect of Loading Frequency on Corrosion Fatigue Crack Growth Behavior of EH36/EH690 Dissimilar High-strength Steel Welded Joints. Materials Reports, 2025, 39(20): 24090131-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090131  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090131
1 Zhang T, Liang Y L, Wei L Q, et al. MW Metal Forming, 2022(2), 20(in Chinese).
张涛, 梁雅琳, 魏丽芹, 等. 金属加工(热加工), 2022(2), 20.
2 Li L P, Yang M H, Du J F, et al. Transactions of Materials and Heat Treatment, 2023, 44(11), 200(in Chinese).
李林平, 杨茂鸿, 杜晋峰, 等. 材料热处理学报, 2023, 44(11), 200.
3 Ren L, Fan Y T. Rechuli Jishu Yu Zhuangbei, 2021, 42(5), 29(in Chinese).
任玲, 范玉婷. 热处理技术与装备, 2021, 42(5), 29.
4 Wang Z P, Zhu M L, Xuan F Z. Transactions of the China Welding Institution, 2024, 45(7), 67(in Chinese).
王志鹏, 朱明亮, 轩福贞. 焊接学报, 2024, 45(7), 67.
5 Li Y. Stress corrosion cracking behavior and mechanism of E690 steel and welded joint in simulated seawater. Ph. D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
李永. EH690钢及焊接接头模拟海水环境中应力腐蚀行为与机理研究. 博士学位论文, 北京科技大学, 2019.
6 Feng R, Yang F M, Shao Y B, et al. Structures, 2024, 62, 106141.
7 Lu Y, Wang H Y, Wang P P, et al. Journal of Constructional Steel Research, 2024, 219, 108744.
8 Lu Y, Wang R Q, Han Q H, et al. Engineering Failure Analysis, 2022, 134, 105977.
9 Lu Y, Yu Z C, Wang R Q. Materials Reports, 2024, 38(1), 22090030(in Chinese).
芦燕, 余振超, 王如琦. 材料导报, 2024, 38(1), 22090030.
10 Guo Y X, Wang Z X. Modern Manufacturing Technology and Equipment, 2024, 60(1), 10(in Chinese).
郭逸轩, 王泽溪. 现代制造技术与装备, 2024, 60(1), 10.
11 Lyu H. Study on corrosion behavior of SUS304/Q345 laser-MAG hybrid welded joint. Master’s Thesis, Southwest Jiaotong University, China, 2019(in Chinese).
吕航. SUS304/Q345异种钢激光-MAG复合焊接头腐蚀行为研究. 硕士学位论文, 西南交通大学, 2019.
12 Zhong Y, Shao Y B, Gao X D, et al. Journal of Constructional Steel Research, 2023, 210, 108104.
13 Liu Z Y, Tang S, Chen J, et al. Angang Technology, 2015(1), 1(in Chinese).
刘振宇, 唐帅, 陈俊, 等. 鞍钢技术, 2015(1), 1.
14 Xu Q, Shao F, Bai L Y, et al. Journal of Central South University, 2021, 28(1), 58.
15 Shen X K, Gao X D, Shao Y B, et al. International Journal of Fatigue, 2024, 189, 108572.
16 Luo X F, Shi J, Shao Y B, et al. China Offshore Oil and Gas, 2023, 35(4), 181(in Chinese).
罗霞飞, 石健, 邵永波, 等. 中国海上油气, 2023, 35(4), 181.
17 Su M L, Yang S Y, Xu L Y, et al. Journal of Materials Research and Technology, 2023, 27, 2007.
18 Gan Z H, Zhao H L, Li X D, et al. Welded Pipe and Tube, 2024, 47(6), 7(in Chinese).
甘正红, 赵海林, 李学达, 等. 焊管, 2024, 47(6), 7.
19 Wang Z F. Journal of North China Institute of Aerospace Engineering, 2013, 23(4), 26(in Chinese).
王兆富. 北华航天工业学院学报, 2013, 23(4), 26.
20 Atta-Agyemang S A, Kesse M A, Kah P, et al. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(3), 369.
21 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Recommended joint preparation for gas welding, manual metal arc welding, gas-shield arc welding and beam welding: GB/T 985. 1-2008, Standards Press of China, China, 2008(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口: GB/T 985. 1-2008, 中国标准出版社, 2008.
22 International Organization for Standardization. Welding-Fusion-weld joints in steel, nickel, titanium and their alloys (beam welding excluded)-Quality levels for imperfections: ISO 5817-2014(B), Switzerland, 2014.
23 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Metallic materials-fatigue testing-fatigue crack growth method, Standardization:GB/T 6398-2017, Standards Press of China, China, 2017(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 金属材料疲劳裂纹扩展速率试验方法: GB/T 6398-2017, 中国标准出版社, 2017.
24 Xu Y L. Ship & Boat, 2016, 27(5), 44(in Chinese).
许蕴蕾. 船舶, 2016, 27(5), 44.
25 Liu D. Study on corrosion fatigue crack propagation characteristics and mechanisms of offshore engineering steel. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2023(in Chinese).
刘冬. 海洋工程用钢腐蚀疲劳裂纹扩展特性及机理研究. 博士学位论文, 武汉科技大学, 2023.
26 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42, 115.
27 Gao X D, Shao Y B, Guo Y J, et al. Materials Reports, 2022, 36(15), 164(in Chinese).
高旭东, 邵永波, 郭永健, 等. 材料导报, 2022, 36(15), 164.
28 Li Y L. Fatigue crack growth performance of bridgesteel: effect of stress ratio, microstructure and single overload. Master’s Thesis, Guangxi University, China, 2023(in Chinese).
李友林. 桥梁钢的疲劳裂纹扩展性能:应力比、微观组织及单峰过载的影响. 硕士学位论文, 广西大学, 2023.
29 Wei L L, Pan Q L, Huang H F, et al. International Journal of Fatigue, 2014, 66, 55.
30 Heshmati N, Hoseini-Athar M, Borgenstam A, et al. International Journal of Fatigue, 2024, 184, 108278.
31 Pan Y F, Guo H, Yuan W, et al. Copper Engineering, 2023(3), 70(in Chinese).
潘一帆, 郭桦, 苑伟, 等. 铜业工程, 2023(3), 70.
[1] 杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金疲劳裂纹扩展行为影响[J]. 材料导报, 2025, 39(14): 24080102-5.
[2] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[3] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[4] 丁文有, 何晓聪, 刘佳沐, 刘洋. 预腐蚀对夹层结构自冲铆接头疲劳特性的影响[J]. 材料导报, 2019, 33(18): 3089-3095.
[5] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[4] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[5] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[6] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[9] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[10] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed