Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080143-8    https://doi.org/10.11896/cldb.24080143
  无机非金属及其复合材料 |
钢-混凝土组合梁中栓钉的非线性受力特性分析
于博1, 蔺鹏臻2,*, 何志刚2
1 兰州交通大学甘肃省道路桥梁与地下工程重点实验室,兰州 730070
2 兰州交通大学土木工程学院,兰州 730070
Analysis of Mechanical Properties of Stud Shear Parts in Steel-Concrete Composite Beams
YU Bo1, LIN Pengzhen 2,*, HE Zhigang2
1 Gansu Provincial Key Laboratory of Road Bridge and Underground Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 9099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了深入研究钢-混凝土组合梁中栓钉剪力连接件的非线性受力特性,本工作基于弹性地基梁理论,系统分析了栓钉在各个工作阶段的受力机理和破坏模式。通过弹性地基梁理论,建立了栓钉在弹性变形阶段和塑性挤压阶段的挠曲线微分方程,并提出了栓钉抗剪承载力、刚度及滑移量的计算公式。在此基础上,通过对计算结果、有限元模拟值以及相关文献数据的对比分析,验证了所提出公式的准确性和荷载-位移三折线本构模型的适用性。研究结果表明:本工作提出的三折线荷载-位移本构模型能够准确描述栓钉剪力连接件的力学行为,特别是在预测栓钉承载力和滑移曲线时,能够更接近栓钉的实际受力情况,表现出较高的精度和适用性,抗剪承载力理论计算值与实测值的误差为8.05%,相对于不同规范和同类文献的计算结果,本工作中的公式与试验值的吻合程度更高。本工作中的理论计算公式可用于初步确定栓钉剪力件的抗剪性能,并为栓钉在钢-混凝土组合结构中的应用和设计提供理论和技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于博
蔺鹏臻
何志刚
关键词:  栓钉剪力件  抗剪承载力  荷载-滑移曲线  数值分析    
Abstract: To thoroughly investigate the nonlinear shear behavior of stud connectors in steel-concrete composite beams, this study systematically analyzes the force mechanism and failure modes of studs at various stages of loading based on the elastic foundation beam theory. By utilizing this theory, differential equations of the deflection curve for studs in both the elastic deformation stage and the plastic compression stage were established. Additionally, formulas for calculating the shear resistance, stiffness, and slip of the studs were proposed. The accuracy of these formulas and the applicability of the proposed load-displacement trilinear constitutive model were validated by comparing the calculated results, finite element simulation values, and relevant literature data. The results indicate that the trilinear load-displacement constitutive model proposed in this work can accurately describe the mechanical behavior of stud shear connectors. Specifically, it shows higher precision and applicability in predicting stud bearing capacity and slip curves, with a discrepancy of 8.05% between the theoretical shear resistance and the experimental values. Compared to other standards and similar literature, the proposed formulas demonstrate a closer match to experimental results. The theoretical formulas presented in this study can be used for the preliminary determination of the shear performance of stud connectors and provide theoretical and technical support for the application and design of studs in steel-concrete composite structures.
Key words:  stud shear connector    shear capacity    load-slip curve    numerical analysis
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TU398.9  
基金资助: 甘肃省高等学校产业支撑计划项目(2024CYZC-21);甘肃省科技计划联合科研基金重大项目(25JRRA1067)
通讯作者:  *蔺鹏臻,博士,兰州交通大学土木工程学院教授、博士研究生导师。目前主要从事钢结构桥梁长期耐久性、桥梁结构性能理论及应用研究。pzhlin@mail.lzjtu.cn   
作者简介:  于博,兰州交通大学土木工程学院博士研究生,在蔺鹏臻教授的指导下进行研究,主要从事钢-混组合桥梁结构长期耐久性的学习与应用研究。
引用本文:    
于博, 蔺鹏臻, 何志刚. 钢-混凝土组合梁中栓钉的非线性受力特性分析[J]. 材料导报, 2025, 39(19): 24080143-8.
YU Bo, LIN Pengzhen, HE Zhigang. Analysis of Mechanical Properties of Stud Shear Parts in Steel-Concrete Composite Beams. Materials Reports, 2025, 39(19): 24080143-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080143  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080143
1 Lin P Z, Yu B, HeZ G. Material Reports, 2024, 38(24), 146 (in Chinese).
蔺鹏臻, 于博, 何志刚. 材料导报, 2024, 38(24), 146.
2 Qi J N, Cheng H, Cheng Z, et al. Journal of Central South University (Natural Science Edition), 2023, 54(5), 1894 (in Chinese).
戚家南, 程杭, 程钊, 等. 中南大学学报(自然科学版), 2023, 54(5), 1894.
3 Zhang Y, Wu J, Shao X D, et al. Journal of Civil Engineering, 2021,(7), 81 (in Chinese).
张阳, 吴洁, 邵旭东, 等. 土木工程学报, 2021, 54(7), 81.
4 Ollgaard J G, Slutter R G, Fisher J W. Engineering Journal, 1971, 8(2), 55.
5 Li C, Chen B C, Hu W X, et al. Engineering Mechanics, 2023, 40(6), 110 (in Chinese).
李聪, 陈宝春, 胡文旭, 等. 工程力学, 2023, 40(6), 110.
6 Lam D, Ei-Lobody E. Journal of Structural Engineering, 2005, 131(1), 96.
7 Wu F W, Feng Y Pg, Dai J, et al. Engineering Mechanics, 2022, 39(2), 2223 (in Chinese).
武芳文, 冯彦鹏, 戴君, 等. 工程力学, 2022, 39(2), 222.
8 Chen Z D, Ma B, Gao L Q. Journal of Bridge Construction, 2023 53(6), 79 (in Chinese).
陈志丹, 马冰, 高立强. 桥梁建设, 2023, 53(6), 79.
9 Kuang Y C, Chen L B, Li C J, et al. Journal of Jilin University (Engineering Science), 2023, 53(2), 538 (in Chinese).
匡亚川, 陈立斌, 李超举, 等. 吉林大学学报(工学版), 2023, 53(2), 538.
10 An R, Wang Y Z. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9), 2554 (in Chinese).
安然, 王有志. 吉林大学学报(工学版), 2023, 53(9), 2554.
11 Ferrero A M. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 1(33), 31A.
12 Zhou J X. Basic engineering (3rd edition), Tsinghua University Press, China, 2015 (in Chinese).
周景星. 基础工程(第3版). 清华大学出版社, 2015.
13 Zhang L. Study on properties of single pile under horizontal load. Ph. D. Thesis, Zhejiang University, 2011 (in Chinese).
张磊. 水平荷载作用下单桩性状研究. 博士学位论文, 浙江大学, 2011.
14 Hsiung Y M. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(5), 475.
15 Nguyen T H, Kim E S. Journal of Constructional Steel Research, 2009, 65(10-11), 1909.
16 Xue W, Ding M, Wang H, et al. Journal of Bridge Engineering, 2008, 13(6), 623.
17 Shi W H. Study on mechanical properties and reliability analysis of steel-concrete composite beams considering durability. Ph. D. Thesis, Central South University, China, 2013 (in Chinese).
石卫华. 考虑耐久性的钢—混凝土组合梁结构力学性能研究及可靠性分析. 博士学位论文, 中南大学, 2013.
18 Ding F X, Ni M, Gong Y Z, et al. Journal of Building Structures, 2014, 35(9), 98 (in Chinese).
丁发兴, 倪鸣, 龚永智, 等. 建筑结构学报, 2014, 35(9), 98.
19 Haji Aboutalebi F, Banihashemi A. The International Journal of Advanced Manufacturing Technology, 2014, 75, 1701.
20 Yang, F, Milan Veljkovic, Yuqing Liu. Construction and Building Materials, 2020, 263, 120632.
21 Jiang T, Ji C, Wang X, et al. Journal of the Brazilian Society of Mecha-nical Sciences and Engineering, 2020, 42(10), 537.
22 Wu F W, Feng Y P, Luo J F, et al. Chinese Journal of Highway Engineering, 2022, 35(10), 14 (in Chinese).
武芳文, 冯彦鹏, 罗建飞, 等. 中国公路学报, 2022, 35(10), 14.
23 China Academy of Building Science. Code for design of concrete structures GB 50010-2010 (2015), China Architecture and Construction Press, China, 2016 (in Chinese).
中国建筑科学研究院. 混凝土结构设计规范 GB50010-2010(2015), 中国建筑工业出版社, 2016.
24 Wang L G. Theory and calculation of steel and concrete composite structure, Beijing Science Press, China, 2005 (in Chinese).
王连广. 钢与混凝土组合结构理论与计算, 科学出版社, 2005.
25 European Committee for Standardization, EN 1994-1-1:2004, Eurocode 4:Design of composite and concrete structures Part 1-1:General rules and rules for buildings, Belgium 2004.
26 European Convention for Constructional Steelwork. Composite structures:European convention for constructional steelwork, LN Productions SPRL, Brussels, 1981.
27 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures:GB 50017—2017, China Architecture & Building Press, China, 2018 (in Chinese).
中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017, 中国建筑工业出版社, 2017.
28 Oehlers D J, Foley L. Proceedings Of the Institution of Civil Engineers, 1985, 79(2), 349.
29 Nie J G, Tan Y, Wang H Q. Journal of Tsinghua University (Natural Science Edition), 1999(12), 94 (in Chinese).
聂建国, 谭英, 王洪全. 清华大学学报(自然科学版), 1999(12), 94.
[1] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[2] 蔺鹏臻, 于博, 何志刚. 焊钉锈蚀对混凝土板锈胀开裂行为的数值模拟及相关影响参数分析[J]. 材料导报, 2024, 38(24): 23120055-8.
[3] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[4] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[5] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[6] 白晓宇, 匡政, 张明义, 王永洪, 刘俊伟, 闫楠. 全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究[J]. 材料导报, 2019, 33(18): 3035-3042.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed