Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070058-8    https://doi.org/10.11896/cldb.24070058
  高分子与聚合物基复合材料 |
一种新型可注射KGM/纤维复合骨水泥治疗骨缺损
刘汉武1,†, 赵强2,†, 肖婷3,†, 颜廷亭1,*
1 昆明理工大学材料科学与工程学院,昆明 650093
2 联勤保障部队920医院口腔科,昆明 650032
3 湖南中医药大学口腔医学院,长沙 410208
A Novel Injectable KGM/Fiber Composite Bone Cement for Bone Defect
IU Hanwu1,, ZHAO Qiang2,, XIAO Ting3,, YAN Tingting1
1 School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China
2 Department of Stomatology,920 Hospital of Joint Logistics Support Force,PLA,Kunming 650032,China
3 School of Dental Medicine,Hunan University of Chinese Medicine,Changsha 410208,China
下载:  全 文 ( PDF ) ( 18301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨水泥注射是治疗骨质疏松症的一种很有前途的手术干预方法。本研究的目的是研制一种新型的可注射生物活性骨水泥,以解决相关医疗难题。骨水泥主要由磷酸三钙(β-TCP)、魔芋葡甘露聚糖(KGM)和羟基磷灰石晶须(HAw)组成。采用正交试验法制备了多套新型复合磷酸钙水泥(NCPC)样品,并对其凝结时间进行了测定。通过相对细胞增殖率(RGR)和体外细胞生长实验评估新型骨水泥的体外相容性。对每组骨水泥进行机械强度和孔隙率测试,并观察其横截面形貌。结果表明,该骨水泥具有良好的自固化性能、机械坚固性和抗坍塌性。
   最佳配方包括HAw和HA的质量比为5/15,KGM添加量为1.2%(质量分数),液相柠檬酸浓度为2%(质量分数)。孔隙率测试结果表明:该材料具有较高的抗压强度和27%左右的孔隙率,这为细胞生长、增殖和材料降解创造了有利条件。同时,体外细胞培养实验结果表明,该材料具有良好的生物相容性。因此,该NCPC是骨植入应用的潜在候选材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘汉武
赵强
肖婷
颜廷亭
关键词:  骨水泥  磷酸钙  正交试验  凝结时间  魔芋葡甘露聚糖    
Abstract: The injection of bone cement is a promising surgical intervention for the treatment of osteoporosis.The aim of this study was to formulate a novel injectable bioactive bone cement to adress such medical problems.The bone cement primarily consists of tricalcium phosphate (β-TCP),konjac glucomannan (KGM),and hydroxyapatite whisker (HAw).An orthogonal experiment was designed to generate multiple sets of new composite calcium phosphate cement (NCPC) samples,and their setting times were measured.The in vitro compatibility of the new bone cement was assessed through relative cell proliferation rate (RGR) and in vitro cell growth experiments.Mechanical strength and porosity tests were conducted for each group of bone cement,and cross-sectional morphology was observed.The results demonstrate that the bone cement exhibits favorable properties such as self-curing,mechanical robustness,and resistance to collapse.
The optimum formulation involves a doping ratio of 5/15(wt%) HAw and HA,an additional amount of 1.2wt% KGM,and a liquid citric acid concentration of 2wt%.Porosity tests confirmed that the material has high compressive strength and a favorable porosity of 27%,creating conducive conditions for cell growth,proliferation,and material degradation.Moreover,in vitro cell culture experiments revealed excellent biocompatibility of the material.Consequently,the developed NCPC emerges as a potential candidate material for applications of bone implantation.
Key words:  bone cement,calcium phosphate,orthogonal test,setting time,konjac glucomannan
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  O64  
基金资助: 云南省杨磊专家工作站(202205AF15025);云南省科技计划项目重点研发(202403AC100023);云南省石墨烯机理研究与应用产业化创新团队(202305AS350017);云南省教育厅石墨烯应用与工程研究中心(KKPP202351001)
通讯作者:  *Tingting Yan,Doctor,Professor.Team leader of Biological Functional materials,Kunming University of Science and Technology.His research interests cover the development and application of materials for bone repair,cartilage repair and skin repair.itty@foxmail.com   
作者简介:  ?共同第一作者Hanwu Liu,received Bachelor of Engineering degree from University of Jinan in June 2021.Currently,as a postgraduate student in the School of Materials Science and Engineering,Kunming University of Science and Technology,conducting research under the guidance of Professor Yan Tingting.At present,the main research area is biological functional materials.
引用本文:    
刘汉武, 赵强, 肖婷, 颜廷亭. 一种新型可注射KGM/纤维复合骨水泥治疗骨缺损[J]. 材料导报, 2025, 39(19): 24070058-8.
IU Hanwu, ZHAO Qiang, XIAO Ting, YAN Tingting1. A Novel Injectable KGM/Fiber Composite Bone Cement for Bone Defect. Materials Reports, 2025, 39(19): 24070058-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070058  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070058
1 Kaliya-Perumal A K, Lin T Y. Journal of Clinical Orthopaedics and Trauma, 2018, 9, S140.
2 Raja N, Han S H, Cho M, et al. Materials & Design, 2022, 219, 110819.
3 Pneumaticos S G, Triantafyllopoulos G K, Evangelopoulos D S, et al. The Spine Journal, 2013, 13, 1921.
4 Aebi M, Maas C, Treuheim T D P, et al. Clinical Biomechanics, 2018, 56, 40.
5 Chen L, Tang Y F, Zhao K, et al. Colloids and Surfaces B:Biointerfaces, 2020, 189, 110848.
6 Chen Z G, Liu H Y, Liu X, et al. Materials Science & Engineering C, 2013, 33, 1048.
7 Lin M C, Chen C C, Wu I T, et al. Materials Science & Engineering C, 2020, 110, 110727.
8 Shi H S, Ye X L, He F P, et al. Colloids and Surfaces B:Biointerfaces, 2019, 177, 462.
9 Sanz-Ruiz P, Matas-Diez J A, Villanueva-Martínez M, et al. The Journal of Arthroplasty, 2020, 35, 3724.
10 Sun H L, Liu C, Li X W, et al. Journal of Orthopaedic Translation, 2020, 20, 56.
11 Chen G Y, Liu B, Liu H, et al. Orthopaedics & Traumatology:Surgery & Research, 2018, 104, 1271.
12 Hu M L, He Z W, Han F X, et al. International Journal of Nanomedicine, 2018, 13, 7183.
13 Padalhin A R, Kim B, Ventura R D, et al. Materials & Design, 2018, 158, 172.
14 Ishikawa K, Miyamoto Y, Takechi M, et al. Journal of Biomedical Materials Research, 1997, 36, 393.
15 Ishikawa K, Miyamoto Y, Kon M, et al. Biomaterials, 1995, 16, 527.
16 Schickert S D L, Jansen J A, Bronkhorst E M, et al. Acta Biomaterialia, 2020, 110, 280.
17 Xu H H K, Jr C G S. Biomaterials, 2005, 26, 1337.
18 Saito M, Nakaya M, Kondo T, et al. Enzyme and Microbial Technology, 2022, 160, 110075.
19 Zhou N, Zheng S X, Xie W Z, et al. Journal of Applied Polymer Science, 2022, 139, 51780.
20 Qian G W, Li X M, He F P, et al. Journal of Biomaterials Applications, 2019, 33, 1094.
21 Feng P, Wei P P, Li P J, et al. Materials Characterization, 2014, 97, 47.
22 Jiang J M, Gong Z Q, Song W, et al. Inorganic Chemistry Communications, 2022, 146, 109860.
23 Gao C X, Liu H L, Luo Z P, et al. Materials Science & Engineering C, 2017, 80, 352.
24 Wang S, Xu C, Yu S C, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 42.
25 Li J, Zhang J, Hou Z R, et al. Key Engineering Materials, 2014, 629, 382.
26 Hablee S, Sopyan I, Mel M, et al. IOP Conference Series:Materials Science and Engineering, 2017, 205, 012012.
27 Qian G W, Li X M, He F P, et al. Journal of Materials Science Materials in Medicine, 2018, 29, 183.
28 Wu M, Tao B L, Wu W P. Ceramics International, 2022, 48, 24298.
29 Zhong W B, Sun L, Yu T, et al. Ceramics International, 2021, 47, 1712.
30 Zhun J J, Yang S H, Cai K W, et al. Theranostics, 2020, 10, 6544.
31 Wu J, Liu F G, Wang Z J, et al. Frontiers in Bioengineering and Biotechnology, 2022, 10, 887252.
32 Liu T, Li J, Shao Z W, et al. Medical Engineering and Physics, 2018, 56, 9.
33 Sengupta S, Khatua C, Balla V K et al. ACS Omega, 2018, 3, 5459.
34 Cai Z P, Wu Z M, Wan Y, et al. Ceramics International, 2021, 47, 29213.
35 Ewelina C, Bartosz M, Elzbieta P, et al. RSC Advances, 2021, 11, 23908.
36 Gallinetti S, Mestres G, Canal C, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 495.
37 Ajoku C A, Turatsinze A, Abou-Chakra A. MATEC Web of Conferences, 2022, 364, 04002.
38 Konishi T, Mizumoto M, Honda M, et al. Procedia Engineering, 2012, 36, 137.
39 Mohammed M A H, Shariff K A, Bakar M H A, et al. Journal of the Australian Ceramic Society, 2022, 58, 1715.
[1] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 周慧晴, 王艺达, 陈欣, 郭庆, 曹世琦, 刘于谦, 肖瑞琳, 梁海霞. 有氧运动调控磷酸钙纳米材料细胞毒性的抑制作用及机制[J]. 材料导报, 2025, 39(15): 25040077-7.
[4] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[5] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[6] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[7] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[8] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[9] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[10] 董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
[11] 吕婉毓, 郭乃胜, 褚召阳, 房辰泽. 水性丙烯酸基道路标线涂料的制备与性能研究[J]. 材料导报, 2023, 37(18): 22040043-7.
[12] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[13] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[14] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[15] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed