Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24060059-7    https://doi.org/10.11896/cldb.24060059
  无机非金属及其复合材料 |
不同钙、铬比例的M型铁氧体的吸波性能研究
翁兴媛1,*, 秦英1, 马志军2,*, 郑云生1, 李卓敏1, 幸会玲1
1 辽宁工程技术大学矿业学院,辽宁 阜新 123000
2 辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
Study on the Absorption Performance of M-type Ferrite Based on Different Ratios of Calcium and Chromium
WENG Xingyuan1,*, QIN Ying1, MA Zhijun2,*, ZHENG Yunsheng1, LI Zhuomin1, XING Huiling1
1 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
下载:  全 文 ( PDF ) ( 15522KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子技术和电子设备及无线通信系统的飞速发展对民用和军事领域都至关重要。同时,有效解决其产生的电磁(EM)辐射污染问题受到了越来越多的关注。采用溶胶凝胶-自蔓延燃烧法制备了M型钙铬铁氧体(Ca1-xCrxFe12O19,x=0.1,0.2,0.3,0.4,0.5),其被预测为优异的电磁波吸收材料。具体分析了钙铬铁氧体在不同离子比例下的晶体结构、微观形貌和电磁波吸收特性变化。结果显示:在pH=7、自蔓延燃烧温度200 ℃、晶化温度950 ℃、晶化时间8 h的条件下,成功制备了平均粒径为70.273~76.786 nm的纳米级六角相钙铬铁氧体。当离子掺杂量x=0.2、吸波层厚度为3.5 mm时,钙铬铁氧体在频率14.6 GHz处的反射损耗值达到-17.5 dB,有效吸收带宽扩展为3.75 GHz(12.22~15.62 GHz、16.12~16.47 GHz)。通过对Ca2+、Cr3+不同比例的掺杂调节了铁氧体的晶粒尺寸和磁晶各向异性等,从而改变了材料的电磁参数和电磁波吸收特性。本工作推动了高性能电磁波吸收器件的发展与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翁兴媛
秦英
马志军
郑云生
李卓敏
幸会玲
关键词:  溶胶凝胶-自蔓延燃烧法  离子比例  磁铅石M型  吸波性能    
Abstract: The rapid development of electronic technology and electronic equipment and wireless communication systems is critical for both the civilian and military sectors. Effectively solving the problem of electromagnetic (EM) radiation pollution generated by it has been given more and more attention at the same time. In this work, M-type calcium-chromium ferrite (Ca1-xCrxFe12O19, x=0.1, 0.2, 0.3, 0.4, 0.5) was prepared by sol-gel-self-propagating combustion, and the sample was predicted to be an excellent electromagnetic wave absorbing material. The changes in crystal structure, microstructure and electromagnetic wave absorption characteristics of calcium chromium ferrites with different ion ratios were analyzed. The results show that:under the conditions of pH=7, self-propagating combustion temperature 200 ℃, crystallization temperature 950 ℃ and crystallization time 8 hours, nano-sized hexagonal calcium chromium ferrites with average particle size of 70.273—76.786 nm were successfully prepared. When x=0.2 and the thickness of absorbing layer is 3.5 mm, the reflection loss reaches -17.5 dB at the frequency of 14.6 GHz, and the effective absorption bandwidth extends to 3.75 GHz (12.22—15.62 GHz, 16.12—16.47 GHz). The doping of Ca2+ and Cr3+ in different proportions affects the grain size and magnetocrystalline anisotropy of ferrite, thus changing the electromagnetic parameters and absorption cha-racteristics of the material. This work broadens the development and application of high performance electromagnetic wave absorber.
Key words:  sol-gel-self-propagating combustion method    ion ratio    magnetite M type    absorbing property
发布日期:  2025-08-28
ZTFLH:  TD989  
基金资助: 国家自然科学基金(52274265)
通讯作者:  *翁兴媛,辽宁工程技术大学矿业学院副教授、硕士研究生导师。研究方向为功能性矿物材料、洁净能源与煤化工。wengxingyuan2008@163.com
马志军,辽宁工程技术大学材料科学与工程学院教授、博士研究生导师。研究方向为矿物资源加工与利用。mazhijun@lntu.edu.cn   
引用本文:    
翁兴媛, 秦英, 马志军, 郑云生, 李卓敏, 幸会玲. 不同钙、铬比例的M型铁氧体的吸波性能研究[J]. 材料导报, 2025, 39(17): 24060059-7.
WENG Xingyuan, QIN Ying, MA Zhijun, ZHENG Yunsheng, LI Zhuomin, XING Huiling. Study on the Absorption Performance of M-type Ferrite Based on Different Ratios of Calcium and Chromium. Materials Reports, 2025, 39(17): 24060059-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060059  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24060059
1 Yang S J, Cao Y, He Y B, et al. New Carbon Materials, DOI:10.1016/S1872-5805(24)60840-1 (in Chinese).
杨赏娟, 曹赟, 贺艳兵, 等. 新型炭材料, DOI:10.1016/S1872-5805(24)60840-1.
2 Xu B K, He Q H, Wang Y Q, et al. Applied Surface Science, 2023, 636, 157839.
3 Xu B K, He Q H, Wang Y Q, et al. Ceramics International, 2023, 49(18), 30125.
4 Thanh T D, Tran N, Thivietchinh N, et al. Journal of Alloys and Compounds, 2023, 952, 170060.
5 Zulkimi M, Azis R S, Ismail I, et al. Diamond and Related Materials, 2023, 137, 110118.
6 Xu B, He Q, Wang Y, et al. Ceramics International, 2023, 49(13), 21335.
7 Meshram M R, Agrawal N K, Sinha B, et al. Journal of Magnetism and Magnetic Materials, 2004, 271(2-3), 207.
8 Vinnik D A, Gudkova S A, Zherebtsov D A, et al. Journal of Magnetism and Magnetic Materials, 2019, 470, 97.
9 Tran N, Choi Y J, Phan T L, et al. Current Applied Physics, 2019, 19(12), 1343.
10 Mallesh S, Sunny A, Vasundhara M, et al. Journal of Magnetism and Magnetic Materials, 2016, 418, 112.
11 Jia P, Liu X, Li G, et al. Nanotechnology, 2006, 17, 3.
12 Sulaiman N H, Ghazali M J, Majlis B Y, et al. Bio-Medical Materials and Engineering, 2015, 26, S103.
13 Manjunatha B C, Rajashekara K M. Materials Today:Proceedings, 2021, 37, 363.
14 Ashiq M N, Qureshi R B, Malana M A, et al. Journal of Alloys and Compounds, 2014, 617, 437.
15 Gabal M A, Angari Y M A, Al-Juaid S S. Journal of Alloys and Compounds, 2010, 492(1-2), 411.
16 Chauhan C C, Gor A A, Gupta T, et al. Ceramics International, 2022, 48(14), 20134.
17 Ravleen, Kumar G S, Kaur B, et al. Materials Today:Proceedings, 2020, 28, 1.
18 Yang Y, Wang F, Shao J, et al. Journal of Alloys and Compounds, 2018, 765, 616.
19 Yang Y, Liu X, Feng S, et al. Chinese Journal of Physics, 2020, 63, 337.
20 Zhou X, Jia Z, Zhang X, et al. Journal of Materials Science & Technology, 2021, 87, 120.
21 Fei Y F, Jiao W L, Wu Z C, et al. Nanoscale, 2023, 15(29), 12193.
22 Alange R C, Khirade P P, Birajdar S D, et al. Journal of Molecular Structure, 2016, 1106, 460.
23 Junaid M, Nadeem M, Abubshait S A, et al. Ceramics International, 2020, 46(16), 25478.
24 Jin L, Yi P, Wan L, et al. Chemical Engineering Journal, 2022, 427, 130940.
25 Ali I, Islam M U, Ashiq M N, et al. Materials Research Bulletin, 2014, 49, 338.
26 Shu R, Zhang G, Wang X, et al. Chemical Engineering Journal, 2018, 337, 242.
27 Ma J, Li W, Fan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(49), 46386.
28 Ma J, Fan S, Wang J, et al. Chemical Engineering Journal, 2022, 442, 136394.
29 Li Z, Li X, Zong Y, et al. Carbon, 2017, 115, 493.
30 Guan X, Yang Z, Zhou M, et al. Small Structures, 2022, 3, 2200102.
31 Shams M H, Salehi S M A, Ghasemi A. Materials Letters, 2008, 62(10-11), 1731.
32 Syazwan M M, Azis R S, Hashim M, et al. Journal of the Australian Ceramic Society, 2017, 53, 465.
33 Syazwan M M, Hashim M, Azis R S, et al. Journal of Materials Science:Materials in Electronics, 2017, 28, 8429.
34 Li B, Yue Z X, Qi X W, et al. Materials Science and Engineering B, 2003, 99(1-3), 252.
[1] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[2] 杜云亮, 杜雪岩, 王胜, 申莹莹, 李彬. 铅银渣中选择性提锌及配碳比对ZnO形貌和吸波性能的影响[J]. 材料导报, 2025, 39(10): 24030125-8.
[3] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[4] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[5] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[6] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[7] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[8] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[9] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[10] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[11] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[12] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[13] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[14] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[15] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[1] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[7] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[8] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
[9] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[10] ZHANG Wuxin, LI Zhiheng, ZHOU Meilin, YIN Yu, LIU Lingyun. Investigation on the Nonlinear Conductance Characteristics of Silicone Rubber Composites[J]. Materials Reports, 2020, 34(12): 12169 -12172 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed