Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060063-8    https://doi.org/10.11896/cldb.24060063
  无机非金属及其复合材料 |
MICP增强水泥改良红层泥岩填料力学性能及作用机理
肖瑶, 邓华锋*, 程雷, 黄小芸, 李建林
三峡大学三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
Mechanical Properties and Mechanism of MICP Enhanced Cement Modified Red Mudstone Filler
XIAO Yao, DENG Huafeng*, CHENG Lei, HUANG Xiaoyun, LI Jianlin
Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 15677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速铁路不可避免地穿越工程性质较差的红层泥岩地区,采用自主提取的蜡样芽孢杆菌进行微生物诱导碳酸盐沉积(Microbial induced carbonate precipitation,MICP)技术增强水泥改良红层泥岩路基填料的性能,通过比较MICP技术改良前后试样的物理力学指标,分析其改良效果;结合微观结构测试结果,探究红层泥岩填料的水泥-微生物协同改良机制。与单一水泥改良组相比,水泥-微生物改良组的无侧限抗压强度提高了12.31%~14.25%、渗透系数降低了6.06%~34.06%、无荷载膨胀率降至0.52%~0.65%,表明微生物的掺加对水泥改良土试样的力学强度、抗渗性和抗膨胀性均有明显提升作用。水泥水化反应和微生物矿化反应同时进行、相互促进,在二者共同作用下,生成了更多的碳酸钙晶体及水化硅酸钙(C-S-H)凝胶等胶结物质填充土颗粒间孔隙并胶结相邻的土颗粒,使得填充后试样的孔隙尺寸及数量均减小,同时增加了颗粒间的接触位点,使得相邻颗粒间胶结得更为紧密,进而改善试样内部孔隙结构、增强颗粒间胶结性能,从而提升红层泥岩填料的物理力学性能。预期研究成果可为微生物增强水泥土技术的工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖瑶
邓华锋
程雷
黄小芸
李建林
关键词:  微生物诱导碳酸盐沉积  红层泥岩填料  力学特性  抗膨胀性  增强机理    
Abstract: The high-speed railway inevitably passes through the areas with red mudstone layer, which is of poor engineering properties. A study was conducted on microbial induced carbonate precipitation (MICP) technique to enhance the performance of red mudstone roadbed filler by using self-extracted Bacillus cereus. By comparing the physical and mechanical indicators of the samples before and after improvement using MICP technique, the enhancement effect was analyzed, and the synergistic enhancement mechanism of cement and MICP was explored from a microstructure perspective. The results showed that, compared with the cement modified soil samples, the unconfined compressive strength of the cement-microbial modified soil samples increased by 12.31%—14.25%, the permeability coefficient decreased by 6.06%—34.06%, and the unloaded expansion rate decreased to 0.52%—0.65%. The addition of microorganisms significantly improves the mechanical strength, impermeability, and expansion resistance of cement modified soil samples. Cement hydration reaction and microbial mineralization reaction are carried out simultaneously and promote each other. Under the combined effects of both, more calcium carbonate crystals and hydrated calcium silicate (C-S-H) gel and other cementitious substances are generated to fill the pores between soil particles and cement adjacent soil particles, minimizing the pore size, reducing the number of filled pores, and increasing the contact points between particles. In this way, the adjacent particles are cemented more closely, thereby improving the internal pore structure of the sample, enhancing the cementation performance between particles, and thus improving the physical and mechanical properties of red mudstone filler. The expected research results can provide reference for the engineering application of microbial enhanced cement soil technology.
Key words:  microbially induced carbonate precipitation (MICP)    red mudstone filler    mechanical property    expansion resistance    enhancement mechanism
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU44  
基金资助: 国家自然科学基金(U22A20600;U2034203);三峡大学人才科研启动基金项目(2024RCKJ021)
通讯作者:  邓华锋,博士,三峡大学土木与建筑学院教授、博士研究生导师。目前主要从事水电工程边坡变形与稳定分析、库岸边坡水岩相互作用机理及卸荷岩体力学试验与理论等方面的研究工作。dhf8010@ctgu.edu.cn   
作者简介:  肖瑶,博士,三峡大学土木与建筑学院讲师、硕士研究生导师。目前主要从事微生物加固岩土体、库岸边坡水-岩作用等方面的研究工作。
引用本文:    
肖瑶, 邓华锋, 程雷, 黄小芸, 李建林. MICP增强水泥改良红层泥岩填料力学性能及作用机理[J]. 材料导报, 2025, 39(15): 24060063-8.
XIAO Yao, DENG Huafeng, CHENG Lei, HUANG Xiaoyun, LI Jianlin. Mechanical Properties and Mechanism of MICP Enhanced Cement Modified Red Mudstone Filler. Materials Reports, 2025, 39(15): 24060063-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060063  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060063
1 Zhang W J, Wang Y S, Ma T. China Earthquake Engineering Journal, 2022, 44(2), 264 (in Chinese).
张渭军, 王永胜, 马滔. 地震工程学报, 2022, 44(2), 264.
2 Xu H, Zhou T Y, Wang X Y, et al. Rock and Soil Mechanics, 2021 , 42(8), 2259 (in Chinese).
徐华, 周廷宇, 王歆宇, 等. 岩土力学, 2021, 42(8), 2259.
3 Chen K, Liu X F, Yuan S Y, et al. Rock and Soil Mechanics, 2022, 43(5), 1261 (in Chinese).
陈康, 刘先峰, 袁胜洋, 等. 岩土力学, 2022, 43(5), 1261.
4 Wang Z M, Jiang G L, Wei Y X. Subgrade Engineering, 2006(5), 86 (in Chinese).
王智猛, 蒋关鲁, 魏永幸. 路基工程, 2006(5), 86.
5 Xu P, Jiang G L, Ren S J, et al. Rock and Soil Mechanics, 2019, 40(2), 678 (in Chinese).
徐鹏, 蒋关鲁, 任世杰, 等. 岩土力学, 2019, 40(2), 678.
6 Li C H. Northern Communications, 2016(9), 38 (in Chinese).
李传华. 北方交通, 2016(9), 38.
7 Zhang Z Y, Jiang G L, Sichuan Architecture, 2008, 28(1), 101 (in Chinese).
张中云, 蒋关鲁, 王智猛. 四川建筑, 2008, 28(1), 101.
8 Zhu Y B, Yu H M, Yang Y X, et al. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2), 425 (in Chinese).
祝艳波, 余宏明, 杨艳霞, 等. 岩石力学与工程学报, 2013, 32(2), 425.
9 Gao S G, Gao H, Xiao Z Q, et al. Subgrade Engineering, 2018(3), 107 (in Chinese).
高曙光, 高晖, 肖尊群, 等. 路基工程, 2018(3), 107.
10 Chen W N, Wang X, Xu S C, et al. China Sciencepaper, 2022, 17 (12), 1325 (in Chinese).
陈伟南, 王旭, 徐硕昌, 等. 中国科技论文, 2022, 17 (12), 1325.
11 Luo X H, Zhang S J, Guo R X, et al. Materials Reports, 2023, 37 (S2), 298 (in Chinese).
罗晓洪, 张世俊, 郭荣鑫, 等. 材料导报, 2023, 37 (S2), 298.
12 Qian C X, Wang A H, Wang X. Rock and Soil Mechanics, 2015, 36(6), 1537 (in Chinese).
钱春香, 王安辉, 王欣. 岩土力学, 2015, 36(6), 1537.
13 Mitchell J K, Santamarina J C. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10), 1222.
14 Van Paassen L A, Daza C M, Staal M, et al. Ecological Engineering, 2010, 36(2), 168.
15 Xu W Q, Lin W B, Luo C H, et al. Journal of Fujian University of Technology, 2022, 20 (6), 511(in Chinese).
许万强, 林文彬, 罗承浩, 等. 福建工程学院学报, 2022, 20 (6), 511.
16 Khan Md N H, Amarakoon G G N N, Shimazaki S, et al. Materials Transactions, 2015, 56(10), 1725.
17 Cui H, Xiao Y, Sun Z C, et al. Chinese Journal of Geotechnical Engineering, 2022, 44 (3), 474 (in Chinese).
崔昊, 肖杨, 孙增春, 等. 岩土工程学报, 2022, 44 (3), 474.
18 Ministry of Railways of the People's Republic of China. Design specification for high speed railway (trial):TB10621. China Railway Publishing House, China, 2011(in Chinese).
中华人民共和国铁道部. 高速铁路设计规范(试行):TB10621. 中国铁道出版社, 2011.
19 Zhi Y Y. MICP Experiment and mechanism research on reinforcement of fractured rock mass. Master's Thesis, China Three Gorges University, China, 2020 (in Chinese).
支永艳. MICP加固裂隙岩体的试验及机理研究. 硕士学位论文, 三峡大学, 2020.
20 Ministry of Water Resources of the People's Republic of China. Standard for soil test methods: GB/T 50123, China Planning Press, China, 2019(in Chinese).
中华人民共和国水利部. 土工试验方法标准:GB/T 50123, 北京, 中国计划出版社, 2019.
21 Cheng L, Deng H F, Xiao Y, et al. Journal of China Three Gorges University (Natural Sciences), 2023, 45(4), 61 (in Chinese).
程雷, 邓华锋, 肖瑶, 等. 三峡大学学报(自然科学版), 2023, 45(4), 61.
22 Ministry of railways of the People's Republic of China. Code for geotechnical testing of railway engineering:TB10102, China Railway Publishing House, China, 2011(in Chinese).
中华人民共和国铁道部. 铁路工程土工试验规程:TB10102, 中国铁道出版社, 2011.
23 Zhao M L, Xu R. Journal of Chongqing Jiaotong Institute, 2000, 19(2), 80.
赵明阶, 徐蓉. 重庆交通学院学报, 2000, 19(2), 80.
24 Yu C C, Lu Z, Yao H L, et al. Rock and Soil Mechanics, 2022, 43(S1), 157 (in Chinese).
喻成成, 卢正, 姚海林, 等. 岩土力学, 2022, 43(S1), 1572.
25 Li J L, Zhu L Y, Zhou K P, et al. Rock and Soil Mechanics, 2019, 40(9), 3524 (in Chinese).
李杰林, 朱龙胤, 周科平, 等. 岩土力学, 2019, 40(9), 3524.
26 Wang X M, Qian C X, Chen Y Q, et al. Journal of Southeast University (Natural Science Edition), 2020, 50(6), 1023 (in Chinese).
王潇猛, 钱春香, 陈燕强, 等. 东南大学学报(自然科学版), 2020, 50(6), 1023.
[1] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[2] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[3] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[4] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[5] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[6] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[7] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[8] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[9] 汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
[10] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[11] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[12] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[13] 段开瑞, 高英力, 周文娟, 裴甘鹏, 何倍. 动静态成型条件下预裂水稳碎石的力学特性[J]. 材料导报, 2020, 34(10): 10068-10075.
[14] 薛秀丽, 曾超峰, 王世斌, 何巍. 软物质力学:行为特性、理论模型和测试方法[J]. 材料导报, 2018, 32(15): 2693-2700.
[15] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed