Test on Degradation of Seawater-immersed CFRP Bars and Analysis on the Degradation Mechanism
GAO Jing1,*, LIU Yuwei1, XU Penghai1, XU Gongyi1,2
1 School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, Fujian, China 2 China Railway Bridge Survey and Design Institute Group Co., Ltd., Wuhan 430050, China
Abstract: In order tostudy the performance degradation of carbon fiber reinforced polymer (CFRP) bars after immersion in real seawater, four kinds of CFRP bars with different surface morphology were immersed in real seawater. The variation rules of the tensile strength and the elastic modulus were investigated through static tensile tests. Meanwhile, the water absorption, surface morphology, microscopic morphology and material composition of the bars were analyzed to explain the degradation mechanism of CFRP bars by SEM, FTIR, and X-ray computed tomography. The results show that, with 0—30 d of immersion, the bar mainly undergoes water absorption and expansion, then the hydrolysis of the resin intensifies after 30 d, and the greater the degree of hydrolysis of the resin, the lower the residual strength of the bar. The tensile strength of CFRP bars decreases with the increase of immersion time, while the residual strength with 90 d of immersion is above 95% of the base bar. Surface morphology has a large impact on the degradation, where surface grooved ribs can accelerate the degradation of the bar, while the sand layer can enhance its durability.
高婧, 刘雨薇, 徐鹏海, 徐恭义. 海水浸泡CFRP筋性能退化试验及其退化机理[J]. 材料导报, 2025, 39(14): 24070052-7.
GAO Jing, LIU Yuwei, XU Penghai, XU Gongyi. Test on Degradation of Seawater-immersed CFRP Bars and Analysis on the Degradation Mechanism. Materials Reports, 2025, 39(14): 24070052-7.
1 Kong L Y, Liu S C, Bao J W, et al. Bulletin of the Chinese Ceramic Society, 2024, 43(1), 147 (in Chinese). 孔令艳, 刘树昌, 鲍玖文, 等. 硅酸盐通报, 2024, 43(1), 147. 2 Fu K, Xue W C. Journal of Building Materials, 2014, 17(1), 35 (in Chinese). 付凯, 薛伟辰. 建筑材料学报, 2014, 17(1), 35. 3 Wang W, Xue W C. Journal of Building Materials, 2012, 15(6), 760 (in Chinese). 王伟, 薛伟辰. 建筑材料学报, 2012, 15(6), 760. 4 Chen Y, Davalos J F, Ray I, et al. Composite Structures, 2007, 78(1), 101. 5 Kim H Y, Park Y H, You Y J, et al. Composite Structures, 2008, 83(1), 37. 6 Benmokrane B, Wang P, Ton-That T M, et al. Journal of Composites for Construction, 2002, 6(3), 143. 7 Zhao Q, Zhang D X, Zhao X L, et al. China Civil Engineering Journal, 2022, 55(9), 25 (in Chinese). 赵齐, 张大旭, 赵晓林, 等. 土木工程学报, 2022, 55(9), 25. 8 Wei B, Cao H L, Song S H. Corrosion Science, 2011, 53(1), 426. 9 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Materials, 2017, 156, 985. 10 Xiu L P, Chang Y F, Zhou Z, et al. Journal of Hainan University (Na-tural Science), 2022, 40(3), 300 (in Chinese). 修林鹏, 常宇飞, 周智, 等. 海南大学学报(自然科学版), 2022, 40(3), 300. 11 Guo F, Al-Saadi S, Singh Raman R K, et al. Corrosion Science, 2018, 141, 1. 12 Xu A Y, Du Y X, Pan L J T, et al. Acta Materiae Compositae Sinica, 2024, 41(7), 3677(in Chinese). 许艾沿, 杜运兴, 潘柳景泰, 等. 复合材料学报, 2024, 41(7), 3677. 13 Chang Y F, Wang Y L, Wang M F, et al. Construction and Building Materials, 2021, 307, 124878. 14 Dong Z Q, Wu G, Xu B, et al. Materials & Design, 2016, 92, 552. 15 Su C, Wang X, Ding L N, et al. Composite Structures, 2022, 292, 115642. 16 Wang L, Mao Y D, Lv H B, et al. Construction and Building Materials, 2018, 162, 442. 17 Subcommittee D30. 04. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials:ASTM D5229/D5229M-20, ASTM International, USA, 2014, pp. 2. 18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standard Administration. Test method for basic mechanical properties of fiber reinforced polymer bar:GB/T 30022-2013, China Standard Press, China, 2013, pp. 1 (in Chinese). 中华人民共和国检验检疫局总局, 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法GB/T 30022-2013, 中国标准出版社, 2013, pp. 1. 19 Zhao Q, Zhang D X, Zhao X L, et al. Composites Science and Technology, 2021, 215, 108961. 20 Yao Z J. Carbon fiber reinforced ribs in hygrothermal environment creep performance study. Master's Thesis. Harbin Institude of Technology, China, 2019 (in Chinese). 姚志杰. 湿热环境下碳纤维增强筋的蠕变性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 21 Li C G, Guo R, Wang J Q, et al. Acta Materiae Compositae Sinica, 2021, 38(10), 3290 (in Chinese). 李承高, 郭瑞, 王俊琦, 等. 复合材料学报, 2021, 38(10), 3290. 22 Deng Z C, Gao W N, Shen F. Acta Materiae Compositae Sinica, 2017, 34(10), 2220 (in Chinese). 邓宗才, 高伟男, 沈锋. 复合材料学报, 2017, 34(10), 2220. 23 Robert M, Benmokrane B. Construction and Building Materials, 2013, 38, 274. 24 Lu C H, Ni M Z, Chu T S, et al. Journal of Materials in Civil Engineering, 2020, 32(7), 04020170. 25 Serbescu A, Guadagnini M, Pilakoutas K. Journal of Composites for Construction, 2015, 19(2), 04014037. 26 Nkurunziza G, Benmokrane B, Debaiky A S, et al. Aci Structural Journal, 2005, 102, 615. 27 Dong Z Q, Wu G, Zhao X L, et al. Journal of Composites for Construction, 2018, 22(5), 04018042.