Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24070052-7    https://doi.org/10.11896/cldb.24070052
  无机非金属及其复合材料 |
海水浸泡CFRP筋性能退化试验及其退化机理
高婧1,*, 刘雨薇1, 徐鹏海1, 徐恭义1,2
1 厦门大学建筑与土木工程学院,福建 厦门 361005
2 中铁大桥勘测设计院集团有限公司,武汉 430050
Test on Degradation of Seawater-immersed CFRP Bars and Analysis on the Degradation Mechanism
GAO Jing1,*, LIU Yuwei1, XU Penghai1, XU Gongyi1,2
1 School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, Fujian, China
2 China Railway Bridge Survey and Design Institute Group Co., Ltd., Wuhan 430050, China
下载:  全 文 ( PDF ) ( 23901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同表面形貌的碳纤维增强复合材料(CFRP)筋在真实海水中浸泡后的性能退化情况,对四种不同表面形貌的CFRP筋进行真实海水浸泡试验。通过对经过不同浸泡时间的试件进行静力拉伸试验,研究其抗拉强度和弹性模量随时间的变化规律。同时,结合电镜扫描、傅里叶红外光谱、X射线计算机断层扫描等结果分析了筋材吸水率、表观形貌、微观形貌和物质组成成分的变化情况,从而解释其在海水环境下的性能退化机理。实验结果表明,海水浸泡0~30 d时筋材主要发生吸水膨胀,30 d后树脂的水解反应加剧,筋材抗拉强度保留率与树脂的水解程度成反比。CFRP筋的抗拉强度随浸泡时间延长会有一定程度降低,但浸泡90 d后抗拉强度保留率均在95%以上。表面形貌对筋材的退化会产生较大影响,其中表面刻槽肋会加速筋材的退化,但表面覆砂可提升其耐久性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高婧
刘雨薇
徐鹏海
徐恭义
关键词:  CFRP筋  海水浸泡  抗拉强度  微观检测  退化机制    
Abstract: In order tostudy the performance degradation of carbon fiber reinforced polymer (CFRP) bars after immersion in real seawater, four kinds of CFRP bars with different surface morphology were immersed in real seawater. The variation rules of the tensile strength and the elastic modulus were investigated through static tensile tests. Meanwhile, the water absorption, surface morphology, microscopic morphology and material composition of the bars were analyzed to explain the degradation mechanism of CFRP bars by SEM, FTIR, and X-ray computed tomography. The results show that, with 0—30 d of immersion, the bar mainly undergoes water absorption and expansion, then the hydrolysis of the resin intensifies after 30 d, and the greater the degree of hydrolysis of the resin, the lower the residual strength of the bar. The tensile strength of CFRP bars decreases with the increase of immersion time, while the residual strength with 90 d of immersion is above 95% of the base bar. Surface morphology has a large impact on the degradation, where surface grooved ribs can accelerate the degradation of the bar, while the sand layer can enhance its durability.
Key words:  CFRP bars    seawater immersion    tensile strength    micro-detection    degradation mechanism
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TB332  
基金资助: 国家自然科学基金联合基金(U2005216);福建省自然科学基金(2020J01010)
通讯作者:  * 高婧,博士,厦门大学建筑与土木工程学院教授、博士生导师。目前主要从事组合结构桥梁计算理论、CFRP筋海水海砂混凝土、CFRP索(筋)在桥梁工程中的应用等方面的研究工作。gaojing@xmu.edu.cn   
引用本文:    
高婧, 刘雨薇, 徐鹏海, 徐恭义. 海水浸泡CFRP筋性能退化试验及其退化机理[J]. 材料导报, 2025, 39(14): 24070052-7.
GAO Jing, LIU Yuwei, XU Penghai, XU Gongyi. Test on Degradation of Seawater-immersed CFRP Bars and Analysis on the Degradation Mechanism. Materials Reports, 2025, 39(14): 24070052-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070052  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24070052
1 Kong L Y, Liu S C, Bao J W, et al. Bulletin of the Chinese Ceramic Society, 2024, 43(1), 147 (in Chinese).
孔令艳, 刘树昌, 鲍玖文, 等. 硅酸盐通报, 2024, 43(1), 147.
2 Fu K, Xue W C. Journal of Building Materials, 2014, 17(1), 35 (in Chinese).
付凯, 薛伟辰. 建筑材料学报, 2014, 17(1), 35.
3 Wang W, Xue W C. Journal of Building Materials, 2012, 15(6), 760 (in Chinese).
王伟, 薛伟辰. 建筑材料学报, 2012, 15(6), 760.
4 Chen Y, Davalos J F, Ray I, et al. Composite Structures, 2007, 78(1), 101.
5 Kim H Y, Park Y H, You Y J, et al. Composite Structures, 2008, 83(1), 37.
6 Benmokrane B, Wang P, Ton-That T M, et al. Journal of Composites for Construction, 2002, 6(3), 143.
7 Zhao Q, Zhang D X, Zhao X L, et al. China Civil Engineering Journal, 2022, 55(9), 25 (in Chinese).
赵齐, 张大旭, 赵晓林, 等. 土木工程学报, 2022, 55(9), 25.
8 Wei B, Cao H L, Song S H. Corrosion Science, 2011, 53(1), 426.
9 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Materials, 2017, 156, 985.
10 Xiu L P, Chang Y F, Zhou Z, et al. Journal of Hainan University (Na-tural Science), 2022, 40(3), 300 (in Chinese).
修林鹏, 常宇飞, 周智, 等. 海南大学学报(自然科学版), 2022, 40(3), 300.
11 Guo F, Al-Saadi S, Singh Raman R K, et al. Corrosion Science, 2018, 141, 1.
12 Xu A Y, Du Y X, Pan L J T, et al. Acta Materiae Compositae Sinica, 2024, 41(7), 3677(in Chinese).
许艾沿, 杜运兴, 潘柳景泰, 等. 复合材料学报, 2024, 41(7), 3677.
13 Chang Y F, Wang Y L, Wang M F, et al. Construction and Building Materials, 2021, 307, 124878.
14 Dong Z Q, Wu G, Xu B, et al. Materials & Design, 2016, 92, 552.
15 Su C, Wang X, Ding L N, et al. Composite Structures, 2022, 292, 115642.
16 Wang L, Mao Y D, Lv H B, et al. Construction and Building Materials, 2018, 162, 442.
17 Subcommittee D30. 04. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials:ASTM D5229/D5229M-20, ASTM International, USA, 2014, pp. 2.
18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standard Administration. Test method for basic mechanical properties of fiber reinforced polymer bar:GB/T 30022-2013, China Standard Press, China, 2013, pp. 1 (in Chinese).
中华人民共和国检验检疫局总局, 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法GB/T 30022-2013, 中国标准出版社, 2013, pp. 1.
19 Zhao Q, Zhang D X, Zhao X L, et al. Composites Science and Technology, 2021, 215, 108961.
20 Yao Z J. Carbon fiber reinforced ribs in hygrothermal environment creep performance study. Master's Thesis. Harbin Institude of Technology, China, 2019 (in Chinese).
姚志杰. 湿热环境下碳纤维增强筋的蠕变性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
21 Li C G, Guo R, Wang J Q, et al. Acta Materiae Compositae Sinica, 2021, 38(10), 3290 (in Chinese).
李承高, 郭瑞, 王俊琦, 等. 复合材料学报, 2021, 38(10), 3290.
22 Deng Z C, Gao W N, Shen F. Acta Materiae Compositae Sinica, 2017, 34(10), 2220 (in Chinese).
邓宗才, 高伟男, 沈锋. 复合材料学报, 2017, 34(10), 2220.
23 Robert M, Benmokrane B. Construction and Building Materials, 2013, 38, 274.
24 Lu C H, Ni M Z, Chu T S, et al. Journal of Materials in Civil Engineering, 2020, 32(7), 04020170.
25 Serbescu A, Guadagnini M, Pilakoutas K. Journal of Composites for Construction, 2015, 19(2), 04014037.
26 Nkurunziza G, Benmokrane B, Debaiky A S, et al. Aci Structural Journal, 2005, 102, 615.
27 Dong Z Q, Wu G, Zhao X L, et al. Journal of Composites for Construction, 2018, 22(5), 04018042.
[1] 苗世坦, 刘嘉麒, 郭玲, 刘忠, 丁宝明, 张蕾. 高温处理对玄武岩纤维抗拉强度和结构的影响[J]. 材料导报, 2024, 38(11): 22090168-6.
[2] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[3] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[4] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[5] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[8] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[9] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[10] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[11] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[12] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[13] 张彪, 陈鑫, 潘凯旋, 赵康明, 于贵申. 多轴载荷下搅拌摩擦点焊接头的失效预测:一种失效经验模型[J]. 材料导报, 2019, 33(18): 3096-3100.
[14] 张赛楠, 潘利文, 罗涛, 黄丹琳, 董强, 胡治流. 稀土La和Ce及超声处理对ZL201铝合金显微组织及抗拉强度的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2452-2457.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed