Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24070064-10    https://doi.org/10.11896/cldb.24070064
  金属与金属基复合材料 |
磁控溅射制备Cr涂层及其在工况下的氧化行为研究
石红利1, 徐文杰1, 桂凯旋1,*, 陈静1, 金海涛1, 胡小刚2
1 安徽工程大学材料科学与工程学院,安徽 芜湖 241000
2 西安稀有金属材料研究院有限公司,西安 710000
Study of Cr Coatings Prepared by Magnetron Sputtering and Their Oxidation Behaviour Under Normal Operating Conditions
SHI Hongli1, XU Wenjie1, GUI Kaixuan1,*, CHEN Jing1, JIN Haitao1, HU Xiaogang2
1 School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
2 Xi’an Rare Metal Materials Research Institute Co.,Ltd., Xi’an 710000, China
下载:  全 文 ( PDF ) ( 82230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高Zr合金在核工业中的抗高温氧化性能,本工作采用直流磁控溅射技术在Zr-4合金上制备厚度为10.5 μm的Cr涂层。采用划痕实验测试了Cr涂层与Zr-4合金基体之间的结合力。通过氧化增重实验研究了Cr涂层在400 ℃、600 ℃、800 ℃空气环境中的氧化行为,采用SEM/EDS对Cr涂层氧化前后的表面与界面进行了表征。磁控溅射制备的Cr涂层与基体的结合力超过87 N,涂层表面致密,呈蠕虫状,Cr涂层在(110)面择优取向。在氧化增重实验中,随着氧化温度的升高,Cr涂层氧化增重加快。经氧化动力学分析,Cr涂层增重与时间呈抛物线关系,Cr涂层与Zr-4合金的氧化增重实验结果的对比表明,400 ℃氧化120 h时,O原子扩散速率较小,Cr涂层的氧化动力学常数kp为7.67×10-9(mg/cm2)2/s,约为Zr-4合金的3/4,600 ℃氧化75 h时,Cr涂层的氧化动力学常数kp为2.39×10-7(mg/cm2)2/s,约为Zr-4合金的1/4,在Cr涂层保护下Zr-4基体未被快速氧化。而在800 ℃氧化12 h后,Cr涂层的氧化动力学常数kp为9.75×10-4(mg/cm2)2/s,Cr涂层发生脱落,涂层的抗氧化能力失效,主要原因是Cr涂层和Zr-4基体共同被氧化。本工作的结果可为Cr涂层在正常工况下的服役提供一定的理论支撑和实践参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石红利
徐文杰
桂凯旋
陈静
金海涛
胡小刚
关键词:  磁控溅射  Cr涂层  结合力  氧化行为    
Abstract: To enhance the anti-temperature oxidation performance of Zr alloys in the nuclear industry, Cr coatings with a thickness of 10.5 μm were prepared on Zr-4 alloys by DC magnetron sputtering. The bonding strength between the Cr coating and the Zr-4 alloy matrix was tested using scratch experiments. The oxidation behaviour of the Cr coatings in air environment at 400 ℃, 600 ℃ and 800 ℃ was investigated by oxidation weight gain experiments. The surface and interface of the Cr coatings before and after oxidation were characterized by SEM/EDS. The results show that the bonding force between the Cr coating and the substrate prepared by magnetron sputtering exceeds 87 N. The surface of the coating is dense and presents a worm-like shape. The Cr coating shows a preferred orientation at (110). The results of weight gain show that the rate of oxidation weight gain increased with oxidation temperature increased. According to the analysis of oxidation kinetics, the weight gain of Cr coating follows a parabolic relationship with time. Compared with the oxidation weight gain of Zr-4 alloy, it was found that the diffusion rate of O atoms was slower when oxidized at 400 ℃ for 120 h. The oxidation kinetics constant kp of Cr coating is 7.67×10-9(mg/cm2)2/s, which is about 3/4 of that of Zr-4 alloy. After 75 h of oxidation at 600 ℃, the oxidation kinetics constant kp of the Cr coating is 2.39×10-7(mg/cm2)2/s, which approximately 1/4 of that of Zr-4 alloy, protecting the Zr-4 substrate from rapid oxidation. After 12 h of oxidation at 800 ℃, the oxidation kinetics constant kp of the Cr coating is 9.75×10-4 (mg/cm2)2/s. The Cr coating peeled off and the anti-oxidation ability of the coating failed, mainly due to the joint oxidation of the Cr coating and Zr-4 substrate. The output of this work may provide theoretical support and practical significance for the service of Cr coatings under normal operating conditions.
Key words:  magnetron sputtering    Cr coating    bonding    oxidation behaviour
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金青年基金(52201099);安徽工程大学科研启动基金(S022021004);安徽工程大学校级科研项目(Xjky2022028);2023年高性能有色金属材料安徽省重点实验室开放基金(YSJS-2023-11)
通讯作者:  *桂凯旋,安徽工程大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事陶瓷基复合材料、功能陶瓷等方面的研究工作。guikx@ahpu.edu.cn   
作者简介:  石红利,安徽工程大学材料科学与工程学院硕士研究生,在陈静、桂凯旋老师的指导下进行研究,主要研究领域为涂层的制备与表征。
引用本文:    
石红利, 徐文杰, 桂凯旋, 陈静, 金海涛, 胡小刚. 磁控溅射制备Cr涂层及其在工况下的氧化行为研究[J]. 材料导报, 2025, 39(13): 24070064-10.
SHI Hongli, XU Wenjie, GUI Kaixuan, CHEN Jing, JIN Haitao, HU Xiaogang. Study of Cr Coatings Prepared by Magnetron Sputtering and Their Oxidation Behaviour Under Normal Operating Conditions. Materials Reports, 2025, 39(13): 24070064-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070064  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24070064
1 Cao D P,Zou S L,Xiao W W,et al.Nuclear Science and Engineering,2020,40(2),264 (in Chinese).
曹殿鹏,邹树梁,肖魏魏,等.核科学与工程,2020,40(2),264.
2 Kim H G,Kim I H,Jung Y I,et al.Journal of Nuclear Materials,2018,510,93.
3 Liu J H,Li Z X,Wang Y F,et al.Rare Metal Materials and Engineering,2021,50(8),3003 (in Chinese).
刘家欢,李争显,王彦峰,等.稀有金属材料与工程,2021,50(8),3003.
4 Wang S X,Bai S X,Zhu L A,et al.Surface Technology,2021,50(1),221 (in Chinese).
王淑祥,白书欣,朱利安,等.表面技术,2021,50(1),221.
5 Katoh Y,Snead L L,Henager C H,et al.Journal of Nuclear Materials,2014,455,387.
6 Stempien J D,Carpenter D M,Kohse G,et al.Nuclear Technology,2017,183,13.
7 Wang P P,Hu K F,Luo H,et al.Journal of the European Ceramic Society,2024,44,748.
8 Li Q,Song P,Zhang R,et al.Corrosion Science,2022,203,110378.
9 Liao H Y,Huang W J,Ruan H B,et al.Journal of Nuclear Materials,2023,583,154530.
10 Meng Y,Zeng S,Chen C,et al.Journal of Nuclear Materials,2024,588,154802.
11 Wang W Z,Zhang G J,Wang C X,et al.Journal of Nuclear Materials,2024,592,154945.
12 Wang Z,Li W T,Wang Z Y,et al.Ceramics International,2023,49,22736.
13 Wang Z,Zhang Y P,Zhou S H,et al.Corrosion Communications,2024,14,49.
14 Zhang T,Liao H Y,Huang W J,et al.Surface and Coatings Technology,2023,459,129358.
15 Gigax J G,Kennas M,Kim H,et al.2019,519,57.
16 Han X C,Wang Y,Peng S M,et al.Corrosion Science,2019,149,45.
17 He L X,Liu C H,Lin J H,et al.Journal of Nuclear Materials,2021,551,152966.
18 Kennas M,Kim H,Gigax J G,et al.Journal of Nuclear Materials,2020,536,152175.
19 Kim I H,Jung Y I,Kim H G,et al.Surface and Coatings Technology,2021,411,126951.
20 Yang X L,Luan B F,Chen L J,et al.Surface and Coatings Technology,2023,437,129992.
21 Li Y H,Meng F P,Ge F F,et al.Corrosion Science,2021,189,109566.
22 Zhang W,Tang R,Yang Z B,et al.Surface and Coatings Technology,2018,347,13.
23 Bhanumurthy K,Kale G B,Khera S K.Journal of Nuclear Materials,1991,185,208.
24 Shaaban H I,Hammad F H,Baron J L.Journal of Nuclear Materials,1978,71,277.
25 Wang D,Zhong R H,Zhang Y P,et al.Corrosion Science,2022,206,110544.
26 Xiao W W,Liu S H,Huang J H,et al.Journal of Nuclear Materials,2023,575,154254.
27 Brachet J C,Rouesne E,Ribis J,et al.Corrosion Science,2020,167,108537.
28 Ma J J,Tan J,Zhou Y,et al.Corrosion Science,2023,218,111192.
29 Zeng S,Li J F,Chen C,et al.npj Materials Degradation,2023,7(1),56.
30 Meng Y,Zeng S,Teng Z,et al.Thin Solid Films,2021,730,138699.
31 Xu Y Y,Li Y H,Meng F P,et al.Surface and Coatings Technology,2022,435,128255.
32 Chen Q S,Liu C H,Zhang R Q,et al.Corrosion Science,2020,165,108378.
33 Hu X G,Dong C,Wang Q,et al.Journal of Nuclear Materials,2019,519,145.
34 Wang Y,Wang L H,Shang L L,et al.Corrosion Science,2022,205,110449.
35 Arias D F,Gómez A,Souza R M,et al.Materials Chemistry and Physics,2018,204,269.
36 Klaus M,Genzel C,Holzschuh H.Thin Solid Films,2008,517,1172.
37 Zhao W Q,Wei T G,Liao J J,et al.Journal of Alloys and Compounds,2021,887,161396.
38 Ma X,Toffolon M C,Guilbert T,et al.Journal of Nuclear Materials,2008,377,359.
[1] 付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
[2] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[3] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[4] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[5] 刘嘉琴, 王晓方, 刘柯钊. 铁氮化工艺、氮化铁的性质及氧化行为的研究现状与展望[J]. 材料导报, 2023, 37(14): 21100038-16.
[6] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[7] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[8] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[9] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[10] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[11] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[12] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[13] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[14] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[15] 胡聪, 应国兵, 刘璐, 孙铖, 文栋, 张建峰, 张晨, 王香, 王乘. 放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为[J]. 材料导报, 2021, 35(12): 12044-12048.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed