Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24080088-11    https://doi.org/10.11896/cldb.24080088
  光热调控超材料的应用与创新 |
用于可穿戴热管理的智能纤维及织物
张荣振, 柏浩*
浙江大学化学工程与生物工程学院, 化学工程联合国家重点实验室, 杭州 310027
Smart Fibers and Fabrics for Wearable Thermal Management
ZHANG Rongzhen, BAI Hao*
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
下载:  全 文 ( PDF ) ( 34421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 保持热舒适对维持人体正常生命活动至关重要。利用纤维和织物进行个人热管理不仅能提升热舒适度,还有助于降低建筑能耗。然而,传统的织物无法满足人类在不同环境下的热舒适需求,迫使研究人员开发新型可穿戴热管理材料。基于材料化学、物理和纳米技术,目前已经开发出许多具有优异热管理性能的纤维及织物。本文综述了体温调节的创新策略和可穿戴热管理材料的最新进展,重点介绍了各种先进的被动和主动热管理材料,旨在梳理热管理材料的工作机理,并为相关领域的研究人员提供全面的参考。首先介绍了人体体温调节的生理基础,随后详细探讨了被动和主动热管理纤维和织物的工作原理及在不同应用场景下的优缺点,最后从商业应用的角度对可穿戴热管理纤维及织物的未来前景和挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张荣振
柏浩
关键词:  热舒适  可穿戴  智能纤维及织物  被动热管理  主动热管理    
Abstract: Maintaining thermal comfort is crucial for sustaining normal human physiological functions. Utilizing fibers and textiles for personal thermal regulation not only enhances thermal comfort but also contributes to reducing building energy consumption. However, traditional textiles often fail to meet diverse human thermal comfort needs, necessitating the development of novel wearable thermal management materials. Thanks to advancements in material chemistry, physics, and nanotechnology, numerous fibers and textiles with outstanding thermal management properties have been developed. This article reviews innovative strategies for temperature regulation and the latest advancements in wearable thermal management materials, focusing on various advanced passive and active thermal management materials. It aims to enhance understanding of the mechanisms behind these materials and provide a comprehensive reference for researchers in the field. It begins with an introduction to the phy-siological basis of human thermal regulation, followed by a detailed exploration of passive and active thermal management fibers and textiles, discussing their operational principles, advantages and disadvantages in various application scenarios. Finally, from a commercial perspective, the article discusses the future prospects and challenges of wearable thermal management fibers and textiles.
Key words:  thermal comfort    wearable    smart fibers and textiles    passive thermal management    active thermal management
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TS15  
  TB34  
基金资助: 国家自然科学基金(T2425008)
通讯作者:  *柏浩,浙江大学化学工程与生物工程学院长聘教授、博士研究生导师。目前主要从事多尺度结构和多功能仿生智能材料、仿生轻质高强复合材料、冰模板法等方面的研究。hbai@zju.edu.cn   
作者简介:  张荣振,现于浙江大学化学工程与生物工程学院攻读硕士学位,在柏浩教授的指导下进行研究,主要从事仿生纤维材料的研究。
引用本文:    
张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
ZHANG Rongzhen, BAI Hao. Smart Fibers and Fabrics for Wearable Thermal Management. Materials Reports, 2025, 39(1): 24080088-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080088  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24080088
1 Peng Y C, Cui Y. Joule, 2020, 4, 724.
2 Axelrod Y K, Diringer M N. Critical Care Clinics, 2006, 22, 767.
3 Chan A P C, Yi W. Indoor and Built Environment, 2016, 25, 3.
4 Hoyt T, Arens E, Zhang H. Building and Environment, 2015, 88, 89.
5 Yang L, Yan H Y, Lam J C. Applied Energy, 2014, 115, 164.
6 Hong S, Gu Y, Seo J K, et al. Science Advances, 2019, 5, eaaw0536.
7 Fang Y S, Chen G R, Bick M, et al. Chemical Society Reviews, 2021, 50, 9357.
8 Zhao D L, Lu X, Fan T Z, et al. Applied Energy, 2018, 218, 282.
9 Sanders D, Grunden A, Dunn R R. Biology Letters, 2021, 17, 20200700.
10 Morgan P W. Journal of Macromolecular Science-Chemistry, 1981, A15, 1113.
11 Cui Y, Gong H X, Wang Y J, et al. Advanced Materials, 2018, 30, 1706807.
12 Liu Z W, Lyu J, Fang D, et al. ACS Nano, 2019, 13, 5703.
13 Wang J M. Integrated Ferroelectrics, 2018, 189, 36.
14 Lin Y Y, Liu X Y, Babar A A, et al. ACS Applied Materials & Interfaces, 2023, 15, 53105.
15 Miao D Y, Huang Z, Wang X F, et al. Small, 2018, 14, 1801527.
16 Liu P, Li Y M, Xu Y F, et al. Small, 2018, 14, 1702926.
17 Vriens J, Nilius B, Voets T. Nature Reviews Neuroscience, 2014, 15, 573.
18 Mundel T, Raman A, Schlader Z J. Temperature (Austin, Tex), 2016, 3, 298.
19 Fang Y S, Zhao X, Chen G R, et al. Joule, 2021, 5, 752.
20 Hu R, Liu Y D, Shin S, et al. Advanced Energy Materials, 2020, 10, 1903921.
21 Tong J K, Huang X P, Boriskina S V, et al. ACS Photonics, 2015, 2, 769.
22 Abbas A, Zhao Y, Wang X G, et al. Journal of the Textile Institute, 2013, 104, 798.
23 Montazer M, Asghari M S G, Pakdel E. Journal of Applied Polymer Science, 2011, 121, 3353.
24 Manasoglu G, Celen R, Kanik M, et al. Journal of Applied Polymer Science, 2019, 136, 48024.
25 Peng Y D, Dong J C, Long J Y, et al. Nano-Micro Letters, 2024, 16, 199.
26 Wang J M, Li Q X, Liu D, et al. Nanoscale, 2018, 10, 16868.
27 Farajikhah S, Van Amber R, Sayyar S, et al. Macromolecular Materials and Engineering, 2019, 304, 1800542.
28 Wang Z L, Zhong Y Q, Wang S Y. Textile Research Journal, 2012, 82, 454.
29 Hu P Y, Wu F S, Ma B J, et al. Advanced Materials, 2024, 36, 2310023.
30 Shao Z, Wang Y, Bai H. Chemical Engineering Journal, 2020, 397, 125441.
31 Wang Y J, Cui Y, Shao Z Y, et al. Chemical Engineering Journal, 2020, 390, 124623.
32 Wu M R, Shao Z Y, Zhao N F, et al. Science, 2023, 382, 1379.
33 Zhou Z G, Wang X, Ma Y G, et al. Cell Reports Physical Science, 2020, 1, 100231.
34 Hsu P C, Song A Y, Catrysse P B, et al. Science, 2016, 353, 1019.
35 Peng Y C, Chen J, Song A Y, et al. Nature Sustainability, 2018, 1, 105.
36 Wu X, Li J, Jiang Q, et al. Nature Sustainability, 2023, 6, 1446.
37 Zeng S N, Pian S J, Su M Y, et al. Science, 2021, 373, 692.
38 Larciprete M C, Gloy Y S, Voti R L, et al. International Journal of Thermal Sciences, 2017, 113, 130.
39 Roh J S, Chi Y S, Kang T J. Smart Materials and Structures, 2009, 18, 025018.
40 Cai L L, Song A Y, Wu P L, et al. Nature Communications, 2017, 8, 496.
41 Yang A K, Cai L L, Zhang R F, et al. Nano Letters, 2017, 17, 3506.
42 Hsu P-C, Liu C, Song A Y, et al. Science Advances, 2017, 3, e1700895.
43 Alehosseini E, Jafari S M. Advances in Colloid and Interface Science, 2020, 283, 102226.
44 Wang G, Tang Z D, Gao Y, et al. Chemical Reviews, 2023, 123, 6953.
45 Guo Z J, Lin F K, Qiao J X, et al. Nano Energy, 2023, 108, 108205.
46 Li G Y, Hong G, Dong D P, et al. Advanced Materials, 2018, 30, 1801754.
47 Zhang Y H, Li T S, Zhang S H, et al. Chemical Engineering Journal, 2022, 436, 135226.
48 Wu J J, Wang M X, Dong L, et al. ACS Nano, 2022, 16, 12801.
49 Jung Y, Kim M, Kim T, et al. Nano-Micro Letters, 2023, 15, 2311.
50 Di J T, Zhang X H, Yong Z Z, et al. Advanced Materials, 2016, 28, 10529.
51 Chen W, Miao H, Meng G Q, et al. Small, 2022, 18, 2107196.
52 Chang J, Shi L, Zhang M, et al. Advanced Materials, 2023, 35, 2209215.
53 Fan X Q, Ding Y, Liu Y, et al. ACS Nano, 2019, 13, 8124.
54 Lei Q, He D F, Ding L P, et al. Advanced Functional Materials, 2022, 32, 2113269.
55 Chen C, Wang R, Li X L, et al. Nano Letters, 2022, 22, 4131.
56 Jeong M H, Kim K C, Kim J S, et al. Advanced Science, 2022, 9, 2104915.
57 Liu P, Li Y, Xu Y, et al. Small, 2018, 14, 1702926.
58 Won P, Park J J, Lee T, et al. Nano Letters, 2019, 19, 6087.
59 Zhao X, Wang L Y, Tang C Y, et al. ACS Nano, 2020, 14, 8793.
60 Yun I, Lee Y, Park Y G, et al. Nano Energy, 2022, 93, 106857.
61 Kim D, Bang J, Lee W, et al. Journal of Materials Chemistry A, 2020, 8, 8281.
62 Kim H, Choi J, Kim K K, et al. Nature Communications, 2021, 12, 4658.
63 Kar-Narayan S, Mathur N D. Ferroelectrics, 2012, 433, 107.
64 Lee J, Kim D, Sul H, et al. Advanced Functional Materials, 2021, 31, 2007376.
65 Ma R J, Zhang Z Y, Tong K, et al. Science, 2017, 357, 1130.
66 Wang Z Y, Bo Y W, Bai P J, et al. Science, 2023, 382, 1291.
67 Lee J A, Aliev A E, Bykova J S, et al. Advanced Materials, 2016, 28, 5038.
68 Jung Y, Choi J, Yoon Y, et al. Nano Energy, 2022, 95, 107002.
69 Lee B, Cho H, Park K T, et al. Nature Communications, 2020, 11, 5948.
70 Wang Y, Yang L, Shi X L, et al. Advanced Materials, 2019, 31, 1807916.
71 Wei W, Wu B, Guo Y, et al. Applied Energy, 2023, 352, 121973.
72 Zeng S, Pian S, Su M, et al. Science, 2021, 373, 692.
73 Zeng K, Shi X, Tang C, et al. Nature Reviews Materials, 2023, 8, 552.
74 Chen M, Ouyang J, Jian A, et al. Nature Communications, 2022, 13, 7097.
[1] 侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
[2] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[3] 王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
[4] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[5] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[6] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[7] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[8] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[9] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[10] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[11] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[12] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[13] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[14] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[15] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed