Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100008-18    https://doi.org/10.11896/cldb.24100008
  光热调控超材料的应用与创新 |
面向建筑节能的新型光热调控技术:主动电致变色与被动辐射制冷
赵思名, 郭震宇, 黄娅, 蓝帆, 赵卓菁, 李润, 张如范*
清华大学化学工程系, 北京 100084
Novel Photothermal Regulation Technologies for Energy-saving: Active Electrochromism and Passive Radiative Cooling
ZHAO Siming, GUO Zhenyu, HUANG Ya, LAN Fan, ZHAO Zhuojing, LI Run, ZHANG Rufan*
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 84359KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 发展新型节能制冷技术对实现建筑热管理与节能具有重大意义。辐射是自然界中最为普遍的一种传热方式,其中,太阳辐射和环境热辐射是两种重要的能量介质。光热调控是一种通过对太阳辐射和热辐射进行调控从而实现对物体内部温度管理的技术,具有极大的发展潜力。针对不同应用场景的需求,材料对太阳辐射与热辐射有不同的光谱的响应需求,可分为主动/被动型光热调控材料。主动型光热调控材料具有可调度高、能耗低等优点,被动型光热调控材料具有零能耗、温度调控能力强等优势,都备受研究人员的广泛关注。本文以主动电致变色与被动辐射制冷为新型光热调控技术的代表,重点概述了其相关的调控原理;基于光谱设计策略及其原理,综述了电致变色材料与辐射制冷材料的相关发展研究,并进一步对其存在的问题及未来的发展方向进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思名
郭震宇
黄娅
蓝帆
赵卓菁
李润
张如范
关键词:  建筑节能  光热调控  电致变色  辐射制冷  光谱设计    
Abstract: The development of novel energy-efficient cooling technologies is of significant importance for the realization of effective building thermal management and energy-saving. Radiation is the most ubiquitous mode of heat transfer in nature, where solar and environmental thermal radiation plays a vital role serving as two critical energy vectors. The photothermal regulation could modulate the solar and thermal radiation properties, thus managing the internal temperature of objects. Materials exhibit varied spectral responses to solar and thermal radiations according to the specific demands of different scenarios, which could be categorized into active and passive photothermal control materials. Active photothermal regulation materials are favored for their high tunability and low energy consumption, while passive photothermal regulation materials are recognized for their zero-energy consumption and robust temperature regulation capabilities, both garnering extensive attention from researchers. This article, exemplifying active control and passive control with electrochromic materials and radiative cooling, respectively, focuses on outlining the regulatory principles of these emerging photothermal control technologies. It reviews the development of electrochromic and radiative cooling materials based on spectral design strategies and principles, and further summarizes the existing challenges and future development directions, providing a comprehensive perspective for researchers in the field of building energy saving.
Key words:  building energy saving    photothermal regulation    electrochromism    radiative cooling    spectral design
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  G321  
基金资助: 国家重点研发计划(2020YFA0210702)
通讯作者:  *张如范,清华大学化学工程系副教授、博士研究生导师。2014年于清华大化学工程系博士毕业。目前主要从事碳纳米管及其功能纤维、高性能光热调控材料、锌空电池催化剂等方面的研究工作。zhangrufan@tsinghua.edu.cn   
作者简介:  赵思名,清华大学化学工程系博士研究生,在张如范教授的指导下进行研究。目前主要研究领域为高性能电致变色与辐射制冷材料的设计与制备。
郭震宇,清华大学探微书院化学生物学+化学工程与工业生物工程专业本科生,在张如范教授的指导下进行研究,目前主要研究领域为高性能辐射制冷材料的设计与制备。
†共同第一作者
引用本文:    
赵思名, 郭震宇, 黄娅, 蓝帆, 赵卓菁, 李润, 张如范. 面向建筑节能的新型光热调控技术:主动电致变色与被动辐射制冷[J]. 材料导报, 2025, 39(1): 24100008-18.
ZHAO Siming, GUO Zhenyu, HUANG Ya, LAN Fan, ZHAO Zhuojing, LI Run, ZHANG Rufan. Novel Photothermal Regulation Technologies for Energy-saving: Active Electrochromism and Passive Radiative Cooling. Materials Reports, 2025, 39(1): 24100008-18.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100008  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100008
1 Ke Y, Zhou C, Zhou Y, et al. Advanced Functional Materials, 2018, 28(22), 1800113.
2 Zhao X, Li J, Dong K, et al. ACS Nano, 2024, 18(28), 18118.
3 So S, Yun J, Ko B, et al. Advanced Science, 2024, 11(2), e2305067.
4 Chai J L, Fan J T. Advanced Energy Materials, 2023, 13(1), 2202932.
5 Yan Y, Cui P, Wu S, et al. Polymer, 2024, 307, 127327.
6 Rohsenow W M, Hartnett J P, Cho Y I. Handbook of heat transfer, McGraw-Hill, New York, 1998.
7 Hossain M M, Gu M. Advanced Science, 2016, 3(7), 1500360.
8 Sui C, Pu J, Chen T H, et al. Nature Sustainability, 2023, 6(4), 428.
9 Ling H, Wu J, Su F, et al. Nature Communications, 2021, 12(1), 1010.
10 Poredoš P, Shan H, Wang C, et al. Energy & Environmental Science, 2024, 17(6), 2336.
11 Brzezicki M. Sustainability, 2021, 13(17), 9604.
12 Shao Z W, Huang A B, Cao C C, et al. Nature Sustainability, 2024, 7(6), 796.
13 大盘点:电致变色技术实际应用解读! (2024-01-24)[2024-11-09]. https://it.sohu.com/a/754011900_121628566.
14 Ke Y, Chen J, Lin G, et al. Advanced Energy Materials, 2019, 9(39), 1902066.
15 Zhai Y, Li J, Shen S, et al. Advanced Functional Materials, 2022, 32(17), 2109848.
16 Luther J M, Jain P K, Ewers T, et al. Nature Materials, 2011, 10(5), 361.
17 Wu Q, Cong S, Zhao J. Journal of Inorganic Materials, 2021, 36(5), 485(in Chinese).
武琦, 丛杉, 赵志刚. 无机材料学报, 2021, 36(5), 485.
18 Zhao S, Wang B, Zhu N, et al. Carbon Neutralization, 2023, 2(1), 4.
19 Huo X. Preparation of WO3-based ordered nano array electrode materials and their electrochromic-capacitive bifunctional properties. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021(in Chinese) .
霍向涛. WO3基有序纳米阵列电极材料的制备及其电致变色-电容双功能性能研究. 博士学位论文, 北京科技大学, 2021.
20 Shchegolkov A V, Jang S H, Shchegolkov A V, et al. Nanomaterials, 2021, 11(9), 2376.
21 Thummavichai K, Xia Y, Zhu Y. Progress in Materials Science, 2017, 88, 281.
22 Runnerstrom E L, Llordés A, Lounis S D, et al. Chemical Communications, 2014, 50(73), 10555.
23 Wen R T, Granqvist C G, Niklasson G A. Nature Materials, 2015, 14(10), 996.
24 Hai Z, Wei Z, Xue C, et al. Journal of Materials Chemistry C, 2019, 7(42), 12968.
25 Zhang S, Cao S, Zhang T, et al. Materials Horizons, 2018, 5(2), 291.
26 Shi Y, Sun M, Zhang Y, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 32658.
27 Takeda H, Adachi K. Journal of the American Ceramic Society, 2007, 90(12), 4059.
28 Wu Q, Cong S, Zhao Z. Journal of Inorganic Materials, 2021, 36(5), 485.
29 Wang L, Liu Y, Han G, et al. Journal of Alloys and Compounds, 2022, 890, 161833.
30 Wang Z, Gong W, Wang X, et al. ACS Applied Materials & Interfaces, 2020, 12(30), 33917.
31 Liu H, Zhang Y, Lei P, et al. ACS Applied Materials & Interfaces, 2023, 15(19), 23412.
32 Pattathil P, Scarfiello R, Giannuzzi R, et al. Nanoscale, 2016, 8(48), 20056.
33 Heo S, Cho S H, Dahlman C J, et al. ACS Energy Letters, 2020, 5(8), 2662.
34 Huang Y, Wang B, Lyu P, et al. Nano Research, 2023, 16(10), 12165.
35 Gong H, Li W, Fu G, et al. Journal of Materials Chemistry A, 2022, 10(12), 6269.
36 Gordon T R, Cargnello M, Paik T, et al. Journal of the American Chemical Society, 2012, 134(15), 6751.
37 Zhang S, Cao S, Zhang T, et al. Advanced Materials, 2020, 32(43), 2004686.
38 Bai T, Li W, Fu G, et al. ACS Applied Materials & Interfaces, 2022, 14(46), 52193.
39 Fleury J, Burnier L, Schüler A. Journal of Applied Physics, 2022, 131(1), 015301.
40 Wei W, Li Z, Guo Z, et al. Applied Surface Science, 2022, 571, 151277.
41 Hashimoto S, Matsuoka H. Journal of the Electrochemical Society, 1991, 138(8), 2403.
42 Hua C, Yuan G, Cheng Z, et al. Electrochimica Acta, 2019, 309, 354.
43 Huang Y, Wang B, Bai X, et al. Advanced Optical Materials, 2022, 10(7), 2102399.
44 Zhao S, Wang B, Huang Y, et al. ACS Applied Nano Materials, 2023, 6(16), 15021.
45 Wang Z, Zhang Q, Cong S, et al. Advanced Optical Materials, 2017, 5(11), 1700194.
46 Shi Y, Zhang Y, Tang K, et al. Chemical Engineering Journal, 2019, 355, 942.
47 Bu X, Feng M, Liu Y, et al. Functional Materials Letters, 2022, 15(3), 2250014.
48 De Trizio L, Buonsanti R, Schimpf A M, et al. Chemistry of Materials, 2013, 25(16), 3383.
49 Liu R, Ren Y, Wang J, et al. Ceramics International, 2021, 47(22), 31834.
50 Dahlman C J, Tan Y, Marcus M A, et al. Journal of the American Che-mical Society, 2015, 137(28), 9160.
51 Barawi M, De Trizio L, Giannuzzi R, et al. ACS Nano, 2017, 11(4), 3576.
52 Agrawal A, Cho S H, Zandi O, et al. Chemical Reviews, 2018, 118(6), 3121.
53 Cao S, Zhang S, Zhang T, et al. Chemistry of Materials, 2018, 30(14), 4838.
54 Wang B, Huang Y, Han Y, et al. Cell Reports Physical Science, 2023, 4(5), 101408.
55 Grocholski B. Science, 2020, 370(6518), 776.
56 Pennisi E. Science, 2020, 370(6518), 778.
57 Bhatia B, Leroy A, Shen Y, et al. Nature Communications, 2018, 9(1), 5001.
58 Wu X, Li J, Xie F, et al. Nature Communications, 2024, 15(1), 815.
59 Ma C Q, Xue C H, Guo X J, et al. Chemical Engineering Journal, 2024, 497, 154431.
60 Zhu B, Li W, Zhang Q, et al. Nature Nanotechnology, 2021, 16(12), 1342.
61 Li X, Liao G, Cai W, et al. Small, 2024, 20, e2403334.
62 Cheng N, Wang Z, Lin Y, et al. Advanced Materials, 2024, e2403223.
63 Du P, Zhao X, Zhan X, et al. Small, 2024, e2403751.
64 Cai L, Song A Y, Li W, et al. Advanced Materials, 2018, 30(35), e1802152.
65 Li J L, Liang Y, Li W, et al. Science Advances, 2022, 8(6), eabj9756.
66 减缓冰雪消融, 达古冰川适合盖哪种“被子”?这群科学家做了这些试验. (2021-10-25)[2024-11-09]. https://mp.weixin.qq.com/s/ugBJaIy5jcPUjZhvoKMzLg.
67 真正解决损耗大、能耗高的难题, 零能耗实现国家准低温储粮标准. (2024-09-07)[2024-11-09]. https://mp.weixin.qq.com/s/HSD_IugiUG8shQP3DZaE9Q.
68 辐射制冷涂层应用于大规模新型储能电站, 前景广阔. (2024-10-21)[2024-11-09]. https://mp.weixin.qq.com/s/NZ5PBOvs_PKjZhR89pzaGA.
69 Raman A P, Anoma M A, Zhu L, et al. Nature, 2014, 515(7528), 540.
70 Wu X, Li J, Jiang Q, et al. Nature Sustainability, 2023, 6(11), 1446.
71 Chae D, Kim M, Jung P H, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8073.
72 Lin Y, Qin C, Liang Z, et al. Advanced Optical Materials, 2024, 12, 2401020.
73 Hong D, Lee Y J, Jeon O S, et al. Nature Communications, 2024, 15(1), 4457.
74 Mandal J, Fu Y K, Overvig A C, et al. Science, 2018, 362(6412), 315.
75 Yang P, Ju Y, He J, et al. Advanced Fiber Materials, DOI: 10.1007/s42765-024-00444-2.
76 Ma H, Yao K, Dou S, et al. Solar Energy Materials and Solar Cells, 2020, 212, 110584.
77 Tang H, Guo C, Fan F, et al. Energy & Environmental Science, 2024, 17(13), 4498.
78 Sui C, Hsu P C. ACS Energy Letters, 2024, 9(6), 2997.
79 Li D, Liu X, Li W, et al. Nature Nanotechnology, 2021, 16(2), 153.
80 Chen Z, Zhu L X, Raman A, et al. Nature Communications, 2016, 7, 13729.
81 Lin C, Li Y, Chi C, et al. Advanced Materials, 2022, 34(12), e2109350.
82 Wu R, Sui C, Chen T H, et al. Science, 2024, 384(6701), 1203.
83 Mandal J, Anand J, Mandal S, et al. Cell Reports Physical Science, 2024, 5(7), 102065.
84 Zhao D L, Aili A, Zhai Y, et al. Applied Physics Reviews, 2019, 6(2), 021306.
85 Gentle A R, Smith G B. Advanced Science, 2015, 2(9), 1500119.
86 Leroy A, Bhatia B, Kelsall C C, et al. Science Advances, 2019, 5(10), eaat9480.
87 Mandal J, Jia M, Overvig A, et al. Joule, 2019, 3(12), 3088.
88 Manoli G, Fatichi S, Schlapfer M, et al. Nature, 2019, 573(7772), 55.
89 Jelle B P, Kalnaes S E, Gao T. Energy and Buildings, 2015, 96, 329.
90 Peng Y, Lai J C, Xiao X, et al. Proceedings of the National Academy of Sciences, 2023, 120(34), e2300856120.
91 Peng Y, Fan L, Jin W, et al. Nature Sustainability, 2021, 5(4), 339.
92 Cheng Q, Gomez S, Hu G, et al. Nexus, 2024, 1(3), 100028.
93 Cai W, Wang J, Wang W, et al. Small, 2024, 20, e2402349.
94 Li Y, Chen X, Yu L, et al. ACS Applied Materials & Interfaces, 2023, 15(3), 4122.
95 Zhou Z, Wang X, Ma Y, et al. Cell Reports Physical Science, 2020, 1(11), 100231.
96 Jung Y, Kim J S, Bang J, et al. Nano Energy, 2024, 129, 110004.
97 Ko B, Noh J, Chae D, et al. Advanced Functional Materials, DOI: 10.1002/adfm. 202410613.
98 Kim M, Lee D, Son S, et al. Advanced Optical Materials, 2021, 9(13), 2002226.
99 Zhang J W, Pan B C, Xu L, et al. Advanced Engineering Materials, 2023, 25(16), 2300062.
100 Dang S, Yi Y, Ye H. Solar Energy, 2020, 195, 483.
101 Li J, Jiang Y, Liu J, et al. Nature Sustainability, 2024, 7(6), 786.
102 Zhao X P, Li T Y, Xie H, et al. Science, 2023, 382(6671), 684.
103 Li X, Peoples J, Yao P, et al. ACS Applied Materials & Interfaces, 2021, 13(18), 21733.
104 Li X Y, Peoples J, Huang Z F, et al. Cell Reports Physical Science, 2020, 1(10), 100221.
105 Cheng Z M, Han H, Wang F Q, et al. Nano Energy, 2021, 89, 106377.
[1] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[2] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[3] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[4] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[5] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[6] 俞朱敏, 李琳, 赵凯, 吴梦悦, 叶常青. 具有光子晶体结构的电致变色器件的研究进展[J]. 材料导报, 2024, 38(21): 23070230-13.
[7] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed