Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080200-14    https://doi.org/10.11896/cldb.22080200
  金属与金属基复合材料 |
电弧增材制造薄壁件形状控制研究进展
邱贺方1, 侯笑晗2, 郭晓辉1, 崔帆帆1, 侯根良1, 张泽1, 罗伟蓬1, 袁晓静1,*
1 火箭军工程大学作战保障学院,西安 710000
2 第61363部队,西安 710000
Progress in Shape Control of Thin-walled Parts for Wire and Arc Additive Manufacturing
QIU Hefang1, HOU Xiaohan2, GUO Xiaohui1, CUI Fanfan1, HOU Genliang1, ZHANG Ze1, LUO Weipeng1, YUAN Xiaojing1,*
1 College of Combat Assurance, Rocket Engineering University, Xi'an 710000, China
2 The 61363 Army, Xi'an 710000, China
下载:  全 文 ( PDF ) ( 65276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧增材制造(WAAM)具有沉积速率快、材料利用率高等优势,在航空航天、军工生产、智能汽车、核电等领域具有广阔的应用前景和发展空间。然而,WAAM自身工艺特点的局限性使其难以充分发挥自由制造的优势。尤其是在制造复杂结构零件过程中,WAAM存在热积累和热循环产生残余应力和热变形等固有工艺性问题,而且复杂结构零件的结构特征也对WAAM控形精度带来不小挑战。本文从薄壁零件的结构特征出发,综述了WAAM直壁结构、尖角结构、交叉结构、倾斜/悬空结构和空间交叉结构薄壁件形状控制面临的难题,并对WAAM复杂结构薄壁件的形状控制研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱贺方
侯笑晗
郭晓辉
崔帆帆
侯根良
张泽
罗伟蓬
袁晓静
关键词:  电弧增材制造  控形精度  路径规划  薄壁结构    
Abstract: WAAM is characterized by fast printing speed and effective material utilization. Thereby, it has a broad application and development space in the fields of aviation and aerospace, military industry, intelligent vehicles, nuclear po-wer, etc. However, the inherent drawbacks of WAAM make it difficult to take full advantage of the free fabrication in practical applications. Especially in the process of manufacturing parts with complicated structures, heat accumulation and thermal cycling lead to both residual stresses and thermal deformations. And the accuracy of shape control is also greatly challenged by the complicated shapes and structures of the parts. In this article, the difficulties and mechanisms of shape control for thin-walled parts with straight walls, sharp corners, cross structures, inclined or overhanging structures, and spatial cross structures are reviewed from the viewpoint of the structural characteristics of the parts. Furthermore, we discuss the potential future work on shape control in the fabrication of complex thin-wall structures.
Key words:  wire and arc additive manufacturing    the accuracy of shape control    path planning    thin-wall structure
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG441  
基金资助: 维修改革项目(WG2022HJJ018)
通讯作者:  *袁晓静,教授、博士研究生导师。长期从事装备失效与增材制造技术研究,发表论文100余篇,SCI、EI检索40余篇。   
作者简介:  邱贺方,火箭军工程大学硕士研究生,在袁晓静教授的指导下进行研究。目前主要研究领域为金属快速增材制造在装备维修方面的应用。
引用本文:    
邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
QIU Hefang, HOU Xiaohan, GUO Xiaohui, CUI Fanfan, HOU Genliang, ZHANG Ze, LUO Weipeng, YUAN Xiaojing. Progress in Shape Control of Thin-walled Parts for Wire and Arc Additive Manufacturing. Materials Reports, 2024, 38(6): 22080200-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080200  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22080200
1 Wang H M. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2690(in Chinese).
王华明. 航空学报, 2014, 35(10), 2690.
2 Jihong Z, Han Z, Chuang W, et al, Chinese Journal of Aeronautics, 2021, 34(1), 91.
3 Zhang L H, Qian B, Zhang C R, et al, Materials Science and Technology, 2022, 30(1), 42(in Chinese).
张立浩, 钱波, 张朝瑞, 等, 材料科学与工艺, 2022, 30(1), 42.
4 Wu W, Xia R, Qian G, et al, Progress in Materials Science, 2023, 131.
5 Li D C, He J K, Tian X Y, et al, Journal of Mechanical Engineering, 2013, 49(6), 129(in Chinese).
李涤尘, 贺健康, 田小永, 等, 机械工程学报, 2013, 49(6), 129.
6 Lu B H , Li D C, Machine Building & Automation, 2013, 42(4), 1(in Chinese).
卢秉恒 , 李涤尘, 机械制造与自动化, 2013, 42(4), 1.
7 Lian Y P, Wang P D, Gao J, et al, Advances in Mechanics, 2021, 51(3), 648(in Chinese).
廉艳平, 王潘丁, 高杰, 等, 力学进展, 2021, 51(3), 648.
8 Jafari D, Vaneker T H, Gibson I, Materials & Design, 2021, 202, 109471.
9 Williams S W, Martina F, Addison A C, et al, Materials Science and Technology, 2016, 32(7), 641.
10 Mcfadden S, Ward R, Quinn J. In: The 35th International Manufactu-ring Conference. Dublin, Ireland, 2018.
11 Ding J, Colegrove P, Mehnen J, et al, Computational Materials Science, 2011, 50(12), 3315.
12 Li J Z, Alkahari M R, Rosli N A B, et al, International Journal of Automation Technology, 2019, 13(3), 346.
13 Ding D, Pan Z, Cuiuri D, et al, The International Journal of Advanced Manufacturing Technology, 2015, 81(1), 465.
14 Karpagaraj A, Parthiban K, Ponmani S. Materials Today: Procee-dings, 2020, 27, 2187.
15 Abedifard R, Sadodin S. Numerical Heat Transfer, Part A: Applications, 2016, 69(3), 311.
16 Yan Z, Chen S, Jiang F, et al, Journal of Materials Processing Technology, 2020, 282, 116693.
17 Sahoo A, Tripathy S. Materials Today: Proceedings, 2021, 41, 363.
18 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35, 127.
19 Singh S, Kumar Sharma S, Rathod D W. Materials Today: Proceedings, 2021, 47, 6564.
20 Liberini M, Astarita A, Campatelli G, et al, Procedia Cirp, 2017, 62, 470.
21 Rosli N A, Alkahari M R, Bin Abdollah M F, et al. Journal of Materials Research and Technology, 2021, 11, 2127.
22 Cunningham C, Flynn J, Shokrani A, et al, Additive Manufacturing, 2018, 22, 672.
23 Xia C, Pan Z, Polden J, et al, Journal of Manufacturing Systems, 2020, 57, 31.
24 Zhang Z D, Zeng Q W, Liu L M, et al, Transactions of the China Wel-ding Institution, 2019, 40(8), 7(in Chinese).
张兆栋, 曾庆文, 刘黎明, 等. 焊接学报, 2019, 40(8), 7.
25 Xiong J, Yin Z, Zhang W. The International Journal of Advanced Manufacturing Technology, 2016, 87(1), 579.
26 Hu Z, Qin X, Shao T, et al, The International Journal of Advanced Ma-nufacturing Technology, 2018, 95(5), 2357.
27 Tang S, Wang G, Huang C, et al. Proceedings of the 30th Annal International Solid Freeform Fabrication Symposium, 2019(1), 814.
28 Ma G, Zhao G, Li Z, et al, The International Journal of Advanced Manufacturing Technology, 2019, 101(5), 1275.
29 Yang D, He C, Zhang G. Journal of Materials Processing Technology, 2016, 227, 153.
30 Ogino Y, Asai S, Hirata Y. Welding in the World, 2018, 62(2), 393.
31 Yang D, Wang G, Zhang G. Journal of Materials Processing Techno-logy, 2017, 244, 215.
32 Antonello M G, Bracarense A Q, Scheuer C J, et al. Journal of Manufacturing Processes, 2021, 71, 156.
33 Dinovitzer M, Chen X, Laliberte J, et al. Additive Manufacturing, 2019, 26, 138.
34 Xiong J, Li Y, Li R, et al. Journal of Materials Processing Technology, 2018, 252, 128.
35 Wu B, Pan Z, Ding D, et al. Journal of Materials Processing Technology, 2018, 258, 97.
36 Liu H, Zhao T, Li L, et al. The International Journal of Advanced Manufacturing Technology, 2020, 106(11), 4879.
37 Corradi D R, Coelho F G, Antonello M G, et al. Journal of Materials Engineering and Performance, 2021, 30(7), 5278.
38 Corradi D R, Bracarense A Q, Wu B, et al. Journal of Materials Proces-sing Technology, 2020, 283, 116723.
39 Ma C, Li C, Yan Y, et al. Journal of Manufacturing Processes, 2021, 67, 461.
40 Scotti F M, Teixeira F R, Da Silva L J, et al. Journal of Manufacturing Processes, 2020, 57, 23.
41 Wu D, Hua X, Ye D, et al. The International Journal of Advanced Ma-nufacturing Technology, 2017, 88(1), 219.
42 Cao H, Huang R, Yi H, et al. Additive Manufacturing, 2022, 59, 103113.
43 Liu M, Yi H, Cao H, et al. Additive Manufacturing, 2021, 48, 102413.
44 Lei Y Y, Xiong J, Li R, et al. Transactions of the China Welding Institution, 2018, 39(5), 73(in Chinese).
雷洋洋, 熊俊, 李蓉, 等, 焊接学报, 2018, 39(5), 73.
45 Kozamernik N, Braun D, Klobar D. The International Journal of Advanced Manufacturing Technology, 2020, 110(7), 1955.
46 Hackenhaar W, Montevecchi F, Scippa A, et al. In:Surface Modification Technologies Conference. Trans Tech Publ, 2019, pp. 241.
47 Hackenhaar W, Mazzaferro J A, Montevecchi F, et al. Journal of Manufacturing Processes, 2020, 52, 58.
48 Cunningham C, Dhokia V, Shokrani A, et al. Materials Letters, 2021, 282, 128707.
49 Montevecchi F, Venturini G, Grossi N, et al. Manufacturing Letters, 2018, 17, 14.
50 Ding D, Wu B, Pan Z, et al. Materials and Manufacturing Processes, 2020, 35(7), 845.
51 Reisgen U, Sharma R, Mann S, et al. Welding in the World, 2020, 64(8), 1409.
52 Nagamatsu H, Sasahara H. Journal of Manufacturing and Materials Processing, 2022, 6(2), 27.
53 Shi J, Li F, Chen S, et al. The International Journal of Advanced Manufacturing Technology, 2019, 101(5), 1349.
54 Bai X, Colegrove P, Ding J, et al. International Journal of Heat and Mass Transfer, 2018, 124, 504.
55 Lei Y, Xiong J, Li R. The International Journal of Advanced Manufacturing Technology, 2018, 96(1), 1355.
56 Yuan X, Qiu H, Zeng F, et al. Journal of Manufacturing Processes, 2022, 77, 63.
57 Alberti E, Bueno B, D'oliveira A. The International Journal of Advanced Manufacturing Technology, 2016, 83(9), 1861.
58 Lucas W A, Bertaso D, Melton G, et al. Welding International, 2012, 26, 243
59 Xiong J, Zhang G, Qiu Z, et al. Journal of Cleaner Production, 2013, 41, 82.
60 Bi M, Xia L, Tran P, et al. Additive Manufacturing, 2022, 55, 102822.
61 Geng H, Li J, Xiong J, et al. Journal of Materials Engineering and Performance, 2017, 26(2), 621.
62 Comminal R, Serdeczny M P, Pedersen D B, et al. Additive Manufactu-ring, 2019, 29, 100753.
63 Geng H, Li J, Xiong J, et al. Journal of Materials Processing Technology, 2017, 243, 40.
64 Li F, Chen S, Wu Z, et al. The International Journal of Advanced Manufacturing Technology, 2018, 96(1), 871.
65 Ding D, Zhao R, Lu Q, et al. Journal of Manufacturing Processes, 2021, 64, 253.
66 Xiong J, Zhu B, Chen H, et al. Journal of Manufacturing Processes, 2020, 58, 368.
67 Mehnen J, Ding J, Lockett H, et al. International Journal of Product Development, 2014, 19(1/2/3), 2.
68 Venturini G, Montevecchi F, Scippa A, et al. Procedia Cirp, 2016, 55, 95.
69 Nguyen L, Buhl J, Bambach M. Additive Manufacturing, 2020, 35, 101265.
70 Ugla A A, Yilmaz O. Arabian Journal for Science and Engineering, 2017, 42(11), 4701.
71 Song G H, Lee C M, Kim D H. Materials, 2021, 14(21), 6477.
72 Li R,Xiong J. Rapid Prototyping Journal, 2019, 25(8), 1433.
73 Zhao Y, Li F, Chen S, et al. Rapid Prototyping Journal, 2019, 26(3), 499.
74 Xiong J, Lei Y, Chen H, et al. Journal of Materials Processing Technology, 2017, 240, 397.
75 Li Y, Xiong J, Yin Z. Robotics and Computer-Integrated Manufacturing, 2019, 56, 1.
76 Yan Z, Zhao Y, Jiang F, et al. Journal of Manufacturing Processes, 2021, 71, 147.
77 Plangger J, Schabhüttl P, Vuherer T, et al. Metals, 2019, 9(6), 650.
78 Ni M, Qin X, Hu Z, et al. The International Journal of Advanced Manufacturing Technology, 2022, 119(3), 1883.
79 Yuan L, Pan Z, Ding D, et al. Robotics and Computer-Integrated Manufacturing, 2020, 63, 101916.
80 Yuan L, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2021, 63, 24.
81 Ding D, Pan Z, Cuiuri D, et al. Robotics and Computer-Integrated Ma-nufacturing, 2016, 37, 139.
82 Murtezaoglu Y, Plakhotnik D, Stautner M, et al. Procedia CIRP, 2018, 78, 73.
83 Panchagnula J S, Simhambhatla S. Virtual and Physical Prototyping, 2016, 11(2), 99.
84 Zhao Y, Li F, Chen S, et al. The International Journal of Advanced Manufacturing Technology, 2019, 104, 3915
85 Nguyen L, Buhl J, Israr R, et al. Additive Manufacturing, 2021, 47, 102365.
86 Panchagnula J S, Simhambhatla S. Robotics and Computer-Integrated Manufacturing, 2018, 49, 194.
87 Yuan L, Ding D, Pan Z, et al. IEEE Transactions on Industrial Informatics, 2020, 16, 454.
88 Yuan L, Pan Z X, Polden J, et al. Journal of Industrial Infermation Inteyratim, 2022, 26, 100265.
89 Ding D, Pan Z, Cuiuri D, et al. Journal of Cleaner Production, 2016, 133, 942.
90 Michel F, Lockett H, Ding J, et al. Robotics and Computer-Integrated Manufacturing, 2019, 60, 1.
91 Rauch M, Hascoet J Y, Querard V. Journal of Manufacturing and Materials Processing, 2021, 5(4), 128.
92 Yili D, Shengfu Y, Yusheng S, et al. The International Journal of Advanced Manufacturing Technology, 2018, 96(5), 2389.
93 Dai F, Zhang H, Li R. Rapid Prototyping Journal, 2020, 26(8), 1405.
94 Wang R, Zhang H, Wang G, et al. Rapid Prototyping Journal, 2020, 26(1), 49.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[3] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[4] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[5] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[6] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[7] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[8] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[9] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
[10] 杨秀烨, 方金祥, 何鹏. 自动焊接传感技术研究现状及发展趋势[J]. 材料导报, 2022, 36(3): 20090224-8.
[11] 石玗, 朱珍文, 张刚, 李璐鹏. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 20090337-8.
[12] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[13] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[14] 朱兵钺, 林健, 雷永平, 符寒光, 张永强, 程四华. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 35(14): 14150-14155.
[15] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed