Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22100041-7    https://doi.org/10.11896/cldb.22100041
  无机非金属及其复合材料 |
改性钢渣-沥青混合料的性能及机理
高颖1, 陈萌2, 王长龙1,*
1 河北工程大学土木工程学院,河北 邯郸 056038
2 北京首钢国际工程技术有限公司市政规划事业部,北京 100043
Properties and Mechanism of Modified Steel Slag-Asphalt Mixture
GAO Ying1, CHEN Meng2, WANG Changlong1,*
1 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
2 Municipal Planning Division, Beijing Shougang International Engineering Technology Co., Ltd., Beijing 100043, China
下载:  全 文 ( PDF ) ( 13125KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用甲基硅酸钠溶液、二氧化硅胶体溶液、聚丙烯酸酯乳液对钢渣进行浸泡改性处理,通过性能测试、扫描电子显微镜(SEM)、声发射等测试方法研究了改性钢渣的物理、力学性能,改性钢渣-沥青混合料的性能,钢渣的改性机理和改性钢渣-沥青混合料的抗裂机理。结果表明,4.75~19 mm钢渣经1%~4%浓度溶剂改性后,物理性能得到明显改善;经3%浓度溶剂改性后的钢渣制备的改性钢渣-沥青混合料的体积稳定性较未改性钢渣-沥青混合料(RSAM)提高了27.92%~39.09%;改性钢渣表面包裹着不同状态的不溶于水的改性保护层,经二氧化硅改性后的钢渣(SMS)表面呈现出致密的层状结构且保持表面粗糙,改性效果最优;二氧化硅改性钢渣-沥青混合料(SMSAM)的裂纹宽度减小,主裂纹出现的时间较晚,SMS对SMSAM的断裂破坏起到了一定的减缓作用,提高了混合料的抗开裂性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高颖
陈萌
王长龙
关键词:  改性钢渣  改性钢渣-沥青混合料  性能  改性机理  抗开裂机理    
Abstract: The steel slag was soaked and modified using sodium methyl silicate solution, silica colloidal solution, and polyacrylate emulsion. The physical and mechanical properties of modified steel slag, the properties of modified steel slag-asphalt mixture, the modification mechanism of steel slag and the crack resistance of modified steel slag-asphalt mixture were investigated by property testing, scanning electron microscope (SEM), acoustic emission and other test methods. The physical properties of 4.75—19 mm steel slag were improved after modification by 1%—4% concentration of solvent. The volume stability of modified steel slag-asphalt mixes prepared from modified steel slag with 3% solvent concentration increased by 27.92% to 39.09% compared to unmodified steel slag-asphalt mixes (RSAM). Modified steel slag surface wrapped with different states of insoluble modified protective layer, the surface of the modified steel slag (SMS) showed a dense layered structure and kept the surface rough, and the modification effect was the best. The crack width of silica modified steel slag-asphalt mixture (SMSAM) was reduced and the main crack appeared later, SMS played a role in slowing down the fracture damage of SMSAM and improved the cracking resistance of the mixture.
Key words:  modified steel slag    modified steel slag-asphalt mixture    property    modification mechanism    cracking resistance mechanism
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU522.3  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);中铁建设集团有限公司科技研发计划(22-14b;22-11b);邯郸市科学技术研究与发展计划项目(21422111260)
通讯作者:  *王长龙,河北工程大学教授、博士研究生导师。2014年1月毕业于北京科技大学,获得矿业工程专业博士学位。长期从事固体废弃物资源化利用、矿物材料及新型低碳生态环境材料研究。主持国家级及省部级项目10余项,发表SCI/EI论文80多篇,授权发明专利27项,出版专著5部,获省部级科技奖励15项,参编行业标准2部。baistuwong@139.com   
作者简介:  高颖,河北工程大学副教授、硕士研究生导师。2006年6月毕业于河北工程大学,获得结构工程专业硕士学位。长期从事道路新型材料、固体废弃物综合利用等研究。发表SCI/EI论文10余篇,授权发明专利9项,参编教材2部,获省部级科技奖励4项。
引用本文:    
高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
GAO Ying, CHEN Meng, WANG Changlong. Properties and Mechanism of Modified Steel Slag-Asphalt Mixture. Materials Reports, 2024, 38(2): 22100041-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100041  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22100041
1 Yin X, Zhang C M, Yang J, et al. Materials Reports, 2018, 32(2), 301(in Chinese).
尹啸, 张崇民, 杨骥, 等. 材料导报, 2018, 32(2), 301.
2 Faleschini F, Brunelli K, Angelo M, et al. Journal of Sustainable Metallurgy, 2016, 2(1), 44.
3 Pasetto M, Baliello A, Giacomello G, et al. Journal of Cleaner Production, 2017, 166(10), 835.
4 Yang L Y, Wen T T, Wang L P, et al. Journal of Environmental Ma-nagement, 2019, 231, 41.
5 Wang Q, Yan P Y, Yang J W, et al. Construction and Building Materials, 2013, 47, 1414.
6 Zhuang S Y, Wang Q. Cement and Concrete Research, 2021, 140, 106283.
7 Netinger I, Bjegovi D, Vrhovac G. Materials and Structures, 2011, 44(9), 1565.
8 Lun Y, Liu S, Luo X, et al. Materials Research Innovations, 2015, 19, 865.
9 Hall C, Large D J, Adderley B, et al. Minerals Engineering, 2014, 65(15), 156.
10 Tam V W Y, Tam C M, Le K N. Resources, Conservation & Recycling, 2006, 50(1), 82.
11 Yang D, Zhou H, Wang J, et al. Journal of Materials Research and Technology, 2021, 12, 1615.
12 Wang C L, Zhao G F, Wang Y B, et al. Materials Reports, 2022, 36(9), 21040178(in Chinese).
王长龙, 赵高飞, 王永波, 等. 材料导报, 2022, 36(9), 21040178.
13 Li J X, Yu Q J, Wei J X, et al. Cement and Concrete Research, 2011, 41(3), 324.
14 Chang E E, Pan S Y, Chen Y H, et al. Journal of Hazardous Materials, 2011, 195, 107.
15 Han X, Feng J J, Shao Y X, et al. Powder Technology, 2020, 370(15), 176.
16 Wang Q, Yan P Y, Feng J W. Journal of Hazardous Materials, 2011, 186(2-3), 1070.
17 Wu S P, Xue Y J, Ye Q S, et al. Building and Environment, 2007, 42 (7), 2580.
18 Masoudi S, Abtahi S M, Golib A. Construction and Building Materials, 2017, 135, 260.
19 Masoudi A, Azarhoosh A. Construction and Building Materials, 2012, 35, 1.
20 Waligora J, Bulteel D, Degrugilliers P, et al. Materials Characterization, 2010, 61(1), 39.
21 Zhu B, Liu H B, Li W J, et al. Sensors, 2020, 20(18), 5090.
22 Liu H B, Zhu B, Wei H B, et al. Sustainability, 2019, 11(24), 6924.
23 Li X J, Marasteanu M. Engineering Fracture Mechanics, 2010, 77(7), 1175.
24 Jiao Y B, Zhang Y, Zhang M S, et al. Engineering Fracture Mechanics, 2019, 211, 209.
25 Jiao Y B, Fu L X, Shan W C, et al. Engineering Fracture Mechanics, 2019, 210, 147.
26 Qiu X, Xu J X, Xiao S L, et al. Construction and Building Materials, 2019, 215, 135.
27 Qiu X, Xu J X, Xu W Y, et al. Construction and Building Materials, 2020, 240, 117961.
28 Chai C, Cheng Y C, Zhang Y W, et al. Sustainability, 2020, 12(7), 2966.
29 Wang C. Study on the surface modification technology of steel slag and the performance of modified steel slag asphalt mixture. Master’s Thesis, Kunming University of Science and Technology, China, 2018(in Chinese).
王川. 钢渣表面改性工艺及改性钢渣沥青混合料性能研究. 硕士学位论文, 昆明理工大学, 2018.
30 An Q F, Cheng G W. Journal of Textile Research, 2006, 27(5), 13 (in Chinese).
安秋凤, 程广文. 纺织学报, 2006, 27(5), 13.
31 Wang Q, Li M Y, Shi M X. Journal of the Chinese Ceramic Society, 2014, 42(5), 629 (in Chinese).
王强, 黎梦圆, 石梦晓. 硅酸盐学报, 2014, 42(5), 629.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed