Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22080244-8    https://doi.org/10.11896/cldb.22080244
  高分子与聚合物基复合材料 |
高导热沥青基碳纤维复合材料在航天器中的应用现状及展望
杨强1,*, 刘洪新2, 何端鹏3, 陈海峰1, 陈维强2, 金晶1, 潘福明1
1 北京空间飞行器总体设计部,北京 100094
2 北京卫星制造厂有限公司,北京 100094
3 中国空间技术研究院,北京 100094
Application Status and Prospect of High Thermal Conductivity Pitch-based Carbon Fiber Composites in Spacecraft
YANG Qiang1,*, LIU Hongxin2, HE Duanpeng3, CHEN Haifeng1, CHEN Weiqiang2, JIN Jing1, PAN Fuming1
1 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
2 Beijing Spacecrafts, Beijing 100094, China
3 China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 29487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着新一代航天器不断朝着超大型化、微小型化、高效能化方向发展,航天器对轻质高强高模高导热材料的需求日益迫切。相比传统的聚丙烯腈(PAN)基碳纤维,高导热沥青基碳纤维具有超高的热导率、更高的拉伸模量以及更低的热膨胀系数,是实现承载/传热/热尺寸稳定性功能一体化的理想材料,在航天领域得到了重要应用并展现出巨大应用前景。本文介绍了高导热沥青基碳纤维及其复合材料的性能特点、发展现状以及在航天器中的应用现状,重点从航天器热管理结构、热防护结构、高尺寸稳定性结构、多功能结构、电子设备外壳等方面综述了其应用现状,最后对高导热沥青基碳纤维复合材料的发展及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨强
刘洪新
何端鹏
陈海峰
陈维强
金晶
潘福明
关键词:  高导热  高模量  沥青基碳纤维  热管理  高尺寸稳定性  多功能结构    
Abstract: With the development of the new generation of spacecraft towards the direction of super-large, micro-miniaturization and high-efficiency, the demand for lightweight, high-strength, high modulus and high thermal conductivity materials for spacecraft is increasingly urgent. Compared with traditional PAN-based carbon fiber, high thermal conductivity pitch-based carbon fiber has ultra-high thermal conductivity, higher tensile modulus and lower thermal expansion coefficient. High thermal conductivity pitch-based carbon fiber is an ideal material to realize the functional integration of load bearing, heat transfer and thermal dimensional stability. It has been widely used in the aerospace field and has shown great application prospects. This paper introduces the performance characteristics, development status and application status of high thermal conductivity pitch-based carbon fiber and its composites in spacecraft. The application status of high thermal conductivity pitch-based carbon fiber composites in spacecraft thermal management structure, thermal protection structure, high dimensional stability structure, multi-function structure and electronic equipment shell are reviewed. Finally, the development and application prospects of high thermal conductivity pitch-based carbon fiber composites are prospected.
Key words:  high thermal conductivity    high modulus    pitch-based carbon fiber    thermal management    high dimensional stability    multifunctional structure
发布日期:  2024-01-16
ZTFLH:  TB332  
基金资助: 装发快速转化项目(8091C29)
通讯作者:  杨强,北京空间飞行器总体设计部高级工程师。2007年7月、2009年7月于北京交通大学分别获得工学学士学位和硕士学位。2009年硕士毕业后到北京空间飞行器总体设计部工作至今。目前主要从事航天器结构设计与验证、轻质新型复合材料及结构应用研究等方面的工作。发表论文10余篇,授权受理专利10余项。yangq_cast@163.com   
引用本文:    
杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
YANG Qiang, LIU Hongxin, HE Duanpeng, CHEN Haifeng, CHEN Weiqiang, JIN Jing, PAN Fuming. Application Status and Prospect of High Thermal Conductivity Pitch-based Carbon Fiber Composites in Spacecraft. Materials Reports, 2024, 38(1): 22080244-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080244  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22080244
1 Wang H F, Yang B Q, Liu G. Materials Reports, 2018, 32(Z1), 395(in Chinese).
王惠芬, 杨碧琦, 刘刚. 材料导报, 2018, 32(Z1), 395.
2 Fan H L. Spacecraft Engineering, 2010, 19(1), 8(in Chinese).
范含林. 航天器工程, 2010, 19(1), 8.
3 Lei Z B, Cao J G, Dong L N, et al. Materials China, 2018, 37(12), 1039(in Chinese).
雷智博, 曹建光, 董丽宁, 等. 中国材料进展, 2018, 37(12), 1039.
4 Shi W J, Gao F, Chai H Y. Aerospace Materials & Technology, 2019, 49(4), 5(in Chinese).
石文静, 高峰, 柴洪友. 宇航材料工艺, 2019, 49(4), 5.
5 Kong Q, Fan Z, Yu L Q, et al. Aerospace Materials & Technology, 2014, 44(1), 16 (in Chinese).
孔清, 樊桢, 余立琼, 等. 宇航材料工艺, 2014, 44(1), 16.
6 Gao F G, Chi W D, Zhang H X, et al. Hi-Tech Fiber & Application, 2015, 40(5), 34(in Chinese).
高峰阁, 迟卫东, 张鸿翔, 等. 高科技纤维与应用, 2015, 40(5), 34.
7 Zhao Q S. Advanced composite material handbook, China Machine Press, China, 2003, pp. 289(in Chinese).
赵渠森. 先进复合材料手册, 机械工业出版社, 2003, pp. 289.
8 Ye C. Preparation and structural regulation of high thermal conductivity mesophase pitch-based carbon fibers. Ph. D. Thesis, Hunan University, China, 2019 (in Chinese).
叶崇. 高导热中间相沥青碳纤维的制备. 博士学位论文, 湖南大学, 2019.
9 Li C Q, Cheng T, Yu J M, et al. Carbon Techniques, 2002(5), 1(in Chinese).
李常清, 程坦, 于健民, 等. 碳素技术, 2002(5), 1.
10 Wang L Y, Liu Z J, Guo Q G, et al. Carbon, 2015, 94, 335.
11 Zhou Y Z, Liu Y F, Sun H C, et al. Hi-Tech Fiber & Application, 2021, 46(4), 44(in Chinese).
周玉柱, 刘云芳, 孙海成, 等. 高科技纤维与应用, 2021, 46(4), 44.
12 Ye C, Wu H, Zhu S P, et al. New Carbon Materials, 2021, 36(5), 980(in Chinese).
叶崇, 吴晃, 朱世鹏, 等. 新型碳材料, 2021, 36(5), 980.
13 Li S T, Peng C Y, Xing S L, et al. Materials Reports, 2012, 26(13), 80(in Chinese).
李仕通, 彭超义, 邢素丽, 等. 材料导报, 2012, 26(13), 80.
14 Silverman E M. Northrop Grumman Technology Review Journal, 2005, 13(2), 1.
15 Feng Z H, Fan Z, Kong Q, et al. Journal of Shanghai University (Natural Science), 2014, 20(1), 52(in Chinese).
冯志海, 樊桢, 孔清, 等. 上海大学学报(自然科学版), 2014, 20(1), 52.
16 Haruo K, Hiroyuki N, Takahiro Y. In:40th Thermophysics Conference. Seattle, 2008, pp. 3926.
17 Hiroaki I, Akira Y, Teturou O, et al. In:31th International Conference on Environmental Systems. Orlando, 2001, pp. 2341.
18 Schlitt R, Bodendieck F, Pistorius A. In:40th International Conference on Environmental Systems. Barcelona, 2010, pp. 6293.
19 Lindenmaier P, Hartmann D, Weiß F. CEAS Space Journal, 2016, 8, 135.
20 Wescott M, McQuien J S, Bertagne C L, et al. In:25th AIAA/AHS Adaptive Structures Conference. Grapevine, 2017, pp. 1878.
21 Stern T, Anderson W G. In:Proceedings of the Space Nuclear Confe-rence. San Diego, 2005, pp. 5.
22 Kouhei Y, Hosei N, Yoshinari K, et al. In:44th International Confe-rence on Environmental Systems. Tucson, 2014, pp. 119.
23 Noda K, Ueno A, Nagano H. In:49th International Conference on Environmental Systems. Boston, 2019, pp. 294.
24 Choi M K. In:13th International Energy Conversion Engineering Confe-rence. Greenbelt, 2015, pp. 3984.
25 Juhasz A. In:6th International Energy Conversion Engineering Conference (IECEC). Cleveland, 2008, pp. 5784.
26 Craven P, SanSoucie M P, Tomboulian B, et al. In:2014 National Space and Missile Materials Symposium (NSMMS). San Diego, 2014, pp. M14-3712.
27 Tomboulian B N. Lightweight, high-temperature radiator for in-space nuclear- electric power and propulsion. Ph. D. Thesis, University of Massachusetts Amherst, USA, 2014.
28 Yao Y M, Li H, Liu Z Q, et al. Journal of Materials Engineering, 2020, 48(11), 156(in Chinese).
姚彧敏, 李红, 刘正启, 等. 材料工程, 2020, 48(11), 156.
29 Ohlhorst C W, Glass D E, Bruce W E, et al. In:56th International Astronautical Congress. Fukuoka, 2005, pp. 1465.
30 Li C J. Hi-Tech Fiber & Application, 2015, 40(3), 9 (in Chinese).
李崇俊. 高科技纤维与应用, 2015, 40(3), 9.
31 Huang S J, Lin J, Jin Z Y, et al. Astronomical Research & Technology, 2020, 17(4), 542 (in Chinese).
黄善杰, 林隽, 金振宇, 等. 天文研究与技术, 2020, 17(4), 542.
32 Randolph J, Ayon J, Dirling R, et al. Carbon, 1999, 37(11), 1733.
33 Choi M. In:4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, 2006, pp. 4100.
34 Morgan S, Jacobs A, Damasio C. In:2020 International Conference on Environmental Systems. Lisbon, 2020, pp. 112.
35 Li T Q, Xu Z H, Hu Z J, et al. Carbon, 2010, 48(3), 924.
36 Ihle A, Hartmann D, Würfl T, et al. In:13th European Conference on Spa-cecraft Structures, Materials & Environmental Testing. Braunschweig, 2014, pp. 1465.
37 Acquaroli L, Onorati F. In:43th Congresso Nazionale AIDAA. Volterra. 2005.
38 Rodriguez J I. Journal of Aerospace, 2000, 109, 382.
39 Ozaki T, Naito K, Mikami I, et al. Acta Astronautica, 2001, 48(5), 321.
40 Suematsu Y, Tsuneta S, Ichimoto K, et al. Solar Physics, 2008, 249, 197.
41 Luo S K, Cheng G M. Infrared and Laser Engineering, 2016, 45(7), 0704001(in Chinese).
罗世魁, 成桂梅. 红外与激光工程, 2016, 45(7), 0704001.
42 Pfeiffe E K, Ihle A, Klebor M, et al. In:Proceedings of 32th ESA Antenna Workshop on Antennas for Space Applications. Noordwijk, 2010.
43 Klebor M, Reichmann O, Pfeiffer E K, et al. In:12th European Confe-rence on Spacecraft Structures, Materials and Environmental Testing. Noordwijk, 2012, pp. 27.
44 Azhevsky Y A. IOP Conference Series:Materials Science and Engineering, 2021, 1060(1), 012027.
45 Utsunomiya S, Kamiya T, Shimizu R. In:Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems. Was-hington, 2013, pp. 206.
46 Peck S. In: 36th Structures, Structural Dynamics and Materials Confe-rence. New Orleans, 1995, pp. 1474.
47 Wang Y, Peng C Y, Wang Z W. Aerospace Materials & Technology, 2010, 40(6), 117(in Chinese).
王阳, 彭超义, 王中伟. 宇航材料工艺, 2010, 40(6), 117.
48 Barnett D M, Rawal S P. IEEE Aerospace and Electronic Systems Magazine, 1999, 14(1), 13.
49 Rawal S P, Barnett D M, Martin D E. IEEE transactions on Advanced Packaging, 1999, 22(3), 379.
50 Marcos J, Segura M, Antolin J C, et al. In:Spacecraft Structures, Materials and Mechanical Testing 2005. Noordwijk, 2005, pp. 146M. 1
51 John R, Atxaga G, Frerker H J, et al. In:13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). Budapest, 2007, pp. 98.
52 Jang T S, Oh D S, Kim J K, et al. Acta Astronautica, 2011, 68(1-2), 240.
53 Brander T, Gantois K, Katajisto H, et al. In:European Conference on Spacecraft Structures, Materials & Mechanical Testing 2005. Noordwijk, 2005, pp. 144B. 1.
54 Raluca V. In:National Research & Development Institute for Gas Turbines. Bucarest, 2015, pp. 2012.
55 Martins M, Gomes R, Pina L, et al. Fibers, 2018, 6(4), 92.
56 John R, Brunner S, Göhler W, et al. In:European Conference on Spa-cecraft Structures, Materials & Mechanical Testing 2005. Noordwijk, 2005, pp.145J. 1.
57 Minakuchi S, Sanada T, Takeda N, et al. Journal of Lightwave Technology, 2015, 33(12), 2658.
58 Warmann E C, Espinet-Gonzalez P, Vaidya N, et al. Acta Astronautica, 2020, 170, 443.
59 Stafford J P, Oswald W R, Ferer S K, et al. U. S. patent application, US005763118, 1998.
60 Rawal S P. JOM Journal of the Minerals, Metals and Materials Society, 2001, 53(4), 14.
61 Conard S J, Azad F, Boldt J D, et al. In:Astrobiology and Planetary Missions. San Diego, 2005, pp. 59061D-1.
62 Dakermanji G, Person C, Jenkins L, et al. In:Seventh European Space Power Conference. San Diego, 2006, pp. 1919.
63 Safak O. Structural design and analysis of a solar array substrate for a GEO satellite. Master’s Thesis, Universitat Politècnica De Catalunya, Turkey, 2013.
64 Coli S, Angeletti M, Gargiulo C, et al. In:37th International Cosmic Ray Conference (ICRC 2021). Berlin, 2021, pp. 68.
[1] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[2] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 纪澄, 王璟, 孙骏宇, 安一卓. 微纳多孔聚合物基辐射冷却材料的制备、性能调控及应用[J]. 材料导报, 2023, 37(24): 22060240-14.
[5] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[6] 金露, 谢鹏, 赵彦琦, 邹博杨, 丁玉龙, 蓝元良, 谯耕. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21): 21113-21126.
[7] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[8] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[9] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed