Application Status and Prospect of High Thermal Conductivity Pitch-based Carbon Fiber Composites in Spacecraft
YANG Qiang1,*, LIU Hongxin2, HE Duanpeng3, CHEN Haifeng1, CHEN Weiqiang2, JIN Jing1, PAN Fuming1
1 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China 2 Beijing Spacecrafts, Beijing 100094, China 3 China Academy of Space Technology, Beijing 100094, China
Abstract: With the development of the new generation of spacecraft towards the direction of super-large, micro-miniaturization and high-efficiency, the demand for lightweight, high-strength, high modulus and high thermal conductivity materials for spacecraft is increasingly urgent. Compared with traditional PAN-based carbon fiber, high thermal conductivity pitch-based carbon fiber has ultra-high thermal conductivity, higher tensile modulus and lower thermal expansion coefficient. High thermal conductivity pitch-based carbon fiber is an ideal material to realize the functional integration of load bearing, heat transfer and thermal dimensional stability. It has been widely used in the aerospace field and has shown great application prospects. This paper introduces the performance characteristics, development status and application status of high thermal conductivity pitch-based carbon fiber and its composites in spacecraft. The application status of high thermal conductivity pitch-based carbon fiber composites in spacecraft thermal management structure, thermal protection structure, high dimensional stability structure, multi-function structure and electronic equipment shell are reviewed. Finally, the development and application prospects of high thermal conductivity pitch-based carbon fiber composites are prospected.
杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
YANG Qiang, LIU Hongxin, HE Duanpeng, CHEN Haifeng, CHEN Weiqiang, JIN Jing, PAN Fuming. Application Status and Prospect of High Thermal Conductivity Pitch-based Carbon Fiber Composites in Spacecraft. Materials Reports, 2024, 38(1): 22080244-8.
1 Wang H F, Yang B Q, Liu G. Materials Reports, 2018, 32(Z1), 395(in Chinese). 王惠芬, 杨碧琦, 刘刚. 材料导报, 2018, 32(Z1), 395. 2 Fan H L. Spacecraft Engineering, 2010, 19(1), 8(in Chinese). 范含林. 航天器工程, 2010, 19(1), 8. 3 Lei Z B, Cao J G, Dong L N, et al. Materials China, 2018, 37(12), 1039(in Chinese). 雷智博, 曹建光, 董丽宁, 等. 中国材料进展, 2018, 37(12), 1039. 4 Shi W J, Gao F, Chai H Y. Aerospace Materials & Technology, 2019, 49(4), 5(in Chinese). 石文静, 高峰, 柴洪友. 宇航材料工艺, 2019, 49(4), 5. 5 Kong Q, Fan Z, Yu L Q, et al. Aerospace Materials & Technology, 2014, 44(1), 16 (in Chinese). 孔清, 樊桢, 余立琼, 等. 宇航材料工艺, 2014, 44(1), 16. 6 Gao F G, Chi W D, Zhang H X, et al. Hi-Tech Fiber & Application, 2015, 40(5), 34(in Chinese). 高峰阁, 迟卫东, 张鸿翔, 等. 高科技纤维与应用, 2015, 40(5), 34. 7 Zhao Q S. Advanced composite material handbook, China Machine Press, China, 2003, pp. 289(in Chinese). 赵渠森. 先进复合材料手册, 机械工业出版社, 2003, pp. 289. 8 Ye C. Preparation and structural regulation of high thermal conductivity mesophase pitch-based carbon fibers. Ph. D. Thesis, Hunan University, China, 2019 (in Chinese). 叶崇. 高导热中间相沥青碳纤维的制备. 博士学位论文, 湖南大学, 2019. 9 Li C Q, Cheng T, Yu J M, et al. Carbon Techniques, 2002(5), 1(in Chinese). 李常清, 程坦, 于健民, 等. 碳素技术, 2002(5), 1. 10 Wang L Y, Liu Z J, Guo Q G, et al. Carbon, 2015, 94, 335. 11 Zhou Y Z, Liu Y F, Sun H C, et al. Hi-Tech Fiber & Application, 2021, 46(4), 44(in Chinese). 周玉柱, 刘云芳, 孙海成, 等. 高科技纤维与应用, 2021, 46(4), 44. 12 Ye C, Wu H, Zhu S P, et al. New Carbon Materials, 2021, 36(5), 980(in Chinese). 叶崇, 吴晃, 朱世鹏, 等. 新型碳材料, 2021, 36(5), 980. 13 Li S T, Peng C Y, Xing S L, et al. Materials Reports, 2012, 26(13), 80(in Chinese). 李仕通, 彭超义, 邢素丽, 等. 材料导报, 2012, 26(13), 80. 14 Silverman E M. Northrop Grumman Technology Review Journal, 2005, 13(2), 1. 15 Feng Z H, Fan Z, Kong Q, et al. Journal of Shanghai University (Natural Science), 2014, 20(1), 52(in Chinese). 冯志海, 樊桢, 孔清, 等. 上海大学学报(自然科学版), 2014, 20(1), 52. 16 Haruo K, Hiroyuki N, Takahiro Y. In:40th Thermophysics Conference. Seattle, 2008, pp. 3926. 17 Hiroaki I, Akira Y, Teturou O, et al. In:31th International Conference on Environmental Systems. Orlando, 2001, pp. 2341. 18 Schlitt R, Bodendieck F, Pistorius A. In:40th International Conference on Environmental Systems. Barcelona, 2010, pp. 6293. 19 Lindenmaier P, Hartmann D, Weiß F. CEAS Space Journal, 2016, 8, 135. 20 Wescott M, McQuien J S, Bertagne C L, et al. In:25th AIAA/AHS Adaptive Structures Conference. Grapevine, 2017, pp. 1878. 21 Stern T, Anderson W G. In:Proceedings of the Space Nuclear Confe-rence. San Diego, 2005, pp. 5. 22 Kouhei Y, Hosei N, Yoshinari K, et al. In:44th International Confe-rence on Environmental Systems. Tucson, 2014, pp. 119. 23 Noda K, Ueno A, Nagano H. In:49th International Conference on Environmental Systems. Boston, 2019, pp. 294. 24 Choi M K. In:13th International Energy Conversion Engineering Confe-rence. Greenbelt, 2015, pp. 3984. 25 Juhasz A. In:6th International Energy Conversion Engineering Conference (IECEC). Cleveland, 2008, pp. 5784. 26 Craven P, SanSoucie M P, Tomboulian B, et al. In:2014 National Space and Missile Materials Symposium (NSMMS). San Diego, 2014, pp. M14-3712. 27 Tomboulian B N. Lightweight, high-temperature radiator for in-space nuclear- electric power and propulsion. Ph. D. Thesis, University of Massachusetts Amherst, USA, 2014. 28 Yao Y M, Li H, Liu Z Q, et al. Journal of Materials Engineering, 2020, 48(11), 156(in Chinese). 姚彧敏, 李红, 刘正启, 等. 材料工程, 2020, 48(11), 156. 29 Ohlhorst C W, Glass D E, Bruce W E, et al. In:56th International Astronautical Congress. Fukuoka, 2005, pp. 1465. 30 Li C J. Hi-Tech Fiber & Application, 2015, 40(3), 9 (in Chinese). 李崇俊. 高科技纤维与应用, 2015, 40(3), 9. 31 Huang S J, Lin J, Jin Z Y, et al. Astronomical Research & Technology, 2020, 17(4), 542 (in Chinese). 黄善杰, 林隽, 金振宇, 等. 天文研究与技术, 2020, 17(4), 542. 32 Randolph J, Ayon J, Dirling R, et al. Carbon, 1999, 37(11), 1733. 33 Choi M. In:4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, 2006, pp. 4100. 34 Morgan S, Jacobs A, Damasio C. In:2020 International Conference on Environmental Systems. Lisbon, 2020, pp. 112. 35 Li T Q, Xu Z H, Hu Z J, et al. Carbon, 2010, 48(3), 924. 36 Ihle A, Hartmann D, Würfl T, et al. In:13th European Conference on Spa-cecraft Structures, Materials & Environmental Testing. Braunschweig, 2014, pp. 1465. 37 Acquaroli L, Onorati F. In:43th Congresso Nazionale AIDAA. Volterra. 2005. 38 Rodriguez J I. Journal of Aerospace, 2000, 109, 382. 39 Ozaki T, Naito K, Mikami I, et al. Acta Astronautica, 2001, 48(5), 321. 40 Suematsu Y, Tsuneta S, Ichimoto K, et al. Solar Physics, 2008, 249, 197. 41 Luo S K, Cheng G M. Infrared and Laser Engineering, 2016, 45(7), 0704001(in Chinese). 罗世魁, 成桂梅. 红外与激光工程, 2016, 45(7), 0704001. 42 Pfeiffe E K, Ihle A, Klebor M, et al. In:Proceedings of 32th ESA Antenna Workshop on Antennas for Space Applications. Noordwijk, 2010. 43 Klebor M, Reichmann O, Pfeiffer E K, et al. In:12th European Confe-rence on Spacecraft Structures, Materials and Environmental Testing. Noordwijk, 2012, pp. 27. 44 Azhevsky Y A. IOP Conference Series:Materials Science and Engineering, 2021, 1060(1), 012027. 45 Utsunomiya S, Kamiya T, Shimizu R. In:Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems. Was-hington, 2013, pp. 206. 46 Peck S. In: 36th Structures, Structural Dynamics and Materials Confe-rence. New Orleans, 1995, pp. 1474. 47 Wang Y, Peng C Y, Wang Z W. Aerospace Materials & Technology, 2010, 40(6), 117(in Chinese). 王阳, 彭超义, 王中伟. 宇航材料工艺, 2010, 40(6), 117. 48 Barnett D M, Rawal S P. IEEE Aerospace and Electronic Systems Magazine, 1999, 14(1), 13. 49 Rawal S P, Barnett D M, Martin D E. IEEE transactions on Advanced Packaging, 1999, 22(3), 379. 50 Marcos J, Segura M, Antolin J C, et al. In:Spacecraft Structures, Materials and Mechanical Testing 2005. Noordwijk, 2005, pp. 146M. 1 51 John R, Atxaga G, Frerker H J, et al. In:13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). Budapest, 2007, pp. 98. 52 Jang T S, Oh D S, Kim J K, et al. Acta Astronautica, 2011, 68(1-2), 240. 53 Brander T, Gantois K, Katajisto H, et al. In:European Conference on Spacecraft Structures, Materials & Mechanical Testing 2005. Noordwijk, 2005, pp. 144B. 1. 54 Raluca V. In:National Research & Development Institute for Gas Turbines. Bucarest, 2015, pp. 2012. 55 Martins M, Gomes R, Pina L, et al. Fibers, 2018, 6(4), 92. 56 John R, Brunner S, Göhler W, et al. In:European Conference on Spa-cecraft Structures, Materials & Mechanical Testing 2005. Noordwijk, 2005, pp.145J. 1. 57 Minakuchi S, Sanada T, Takeda N, et al. Journal of Lightwave Technology, 2015, 33(12), 2658. 58 Warmann E C, Espinet-Gonzalez P, Vaidya N, et al. Acta Astronautica, 2020, 170, 443. 59 Stafford J P, Oswald W R, Ferer S K, et al. U. S. patent application, US005763118, 1998. 60 Rawal S P. JOM Journal of the Minerals, Metals and Materials Society, 2001, 53(4), 14. 61 Conard S J, Azad F, Boldt J D, et al. In:Astrobiology and Planetary Missions. San Diego, 2005, pp. 59061D-1. 62 Dakermanji G, Person C, Jenkins L, et al. In:Seventh European Space Power Conference. San Diego, 2006, pp. 1919. 63 Safak O. Structural design and analysis of a solar array substrate for a GEO satellite. Master’s Thesis, Universitat Politècnica De Catalunya, Turkey, 2013. 64 Coli S, Angeletti M, Gargiulo C, et al. In:37th International Cosmic Ray Conference (ICRC 2021). Berlin, 2021, pp. 68.