Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1151-1157    https://doi.org/10.11896/j.issn.1005-023X.2018.07.016
  材料综述 |
扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用
宋博, 陈旭
辽宁石油化工大学石油天然气工程学院,抚顺 113001
Scanning Kelvin Probe Force Microscopy: Working Principle and Application in the Research of Materials Corrosion
SONG Bo, CHEN Xu
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001
下载:  全 文 ( PDF ) ( 1928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 扫描Kelvin探针力显微镜(SKPFM)是在原子力显微镜(AFM)的基础上应用扫描Kelvin探针(SKP)技术开发的检测表征手段,它能够在获取材料表面纳米级分辨率形貌的同时,原位得到样品表面高分辨率的接触电势差分布图,为揭示腐蚀反应机理提供了崭新的思路,近年来发展迅速。本文介绍了SKPFM两种工作模式的基本原理,总结了SKPFM在应用中的问题,并讨论了SKPFM和传统扫描Kelvin探针技术(SKP)的优缺点,重点综述了SKPFM在腐蚀科学研究中的应用,最后展望了SKPFM的发展方向与应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋博
陈旭
关键词:  扫描Kelvin探针力显微镜  原子力显微镜  伏打电位差  腐蚀  工作原理    
Abstract: Scanning Kelvin probe force microscopy (SPFKM) is a material measuring and characterizing technique which applies scanning Kelvin probe on the basis of atomic force microscopy (AFM) and has been gaining momentum in recent years. It involves simultaneously the nanometer-level topography measurement and the in-situ high-resolution volta potential mapping, thereby providing a novel insight in investigating the mechanisms of materials’ corrosion behaviours. The present paper sketches out the principles with respect to the two working modes of SKPFM, summarizes the unresolved issues that have emerged in SPFKM’s application, and also renders a comparative discussion between SKPFM and the traditional SKP technique. The review offers an elaborate delineation about the application of SKPFM in corrosion science, and ends with a rough description of the opportunities and challenges.
Key words:  scanning Kelvin probe force microscopy    atomic force microscopy    volta potential difference    corrosion    working principle
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG174.3  
基金资助: 国家自然科学基金(51201009);辽宁省自然科学基金(2013020078)
通讯作者:  陈旭:通信作者,女,1974年生,教授,主要从事金属材料腐蚀与防护研究 E-mail:469428642@qq.com   
作者简介:  宋博:男,1991年生,硕士研究生,主要从事金属材料腐蚀与防护研究
引用本文:    
宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
SONG Bo, CHEN Xu. Scanning Kelvin Probe Force Microscopy: Working Principle and Application in the Research of Materials Corrosion. Materials Reports, 2018, 32(7): 1151-1157.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.016  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1151
1 Binnig G, Rohrer H. Scanning tunneling microscopy[J].Helvetica Physica Acta,1982,55:726.
2 Binnig G, Quate C F, Gerber C H, et al. Atomic force microscope[J].Physical Review Letters,1986,56:930.
3 Baykara M Z, Schwarz U D. Atomic force microscopy: Methods and applications[M]∥Lindon J,Tranter G,Koppenaal D W.Encyclopedia of spectroscopy and spectrometry.3rd ed.Oxford:Academic Press,2017:70.
4 Nonnenmacher M, O’Boyle M P, Wickramasinghe H K. Kelvin probe force microscopy[J].Applied Physical Letters,1991,58:2921.
5 Kelvin L V.Contact electricity of metals[J].The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 1898,46:82.
6 Zisman W A. A new method of measuring contact potential[J].Review of Scientific Instruments,1932,3:367.
7 Schmutz P, Frankel G S. Characterization of AA2024-T3 by scanning kelvin probe force microscopy[J].Journal of The Electrochemical Society,1998,145:2285.
8 Schmutz P, Frankel G S. Corrosion study of AA2024-T3 by scanning kelvin probe force microscopy and in situ atomic force microscopy scratching[J].Journal of The Electrochemical Society,1998,145:2295.
9 García R, Pérez R. Dynamic atomic force microscopy methods[J].Surface Science Reports,2002,47:197.
10Hölscher H, Ebeling D, Schmutz J E, et al. Dynamic force microscopy and spectroscopy using the frequency-modulation technique in air and liquids[M]∥Bhushan B. Scanning probe microscopy in nanoscience and nanotechnology.Berlin Heidelberg:Springer-Verlag,2010:3.
11Sadewasser S, Glatzel T. Kelvin probe force microscopy[M].Berlin Heidelberg:Springer-Verlag,2012.
12Mélin T, Zdrojek M, Brunel D. Electrostatic force microscopy and kelvin force microscopy as a probe of the electrostatic and electronic properties of carbon nanotubes[M]∥Bhushan B.Scanning probe microscopy in nanoscience and nanotechnology.Berlin Heidelberg:Springer-Verlag,2010:89.
13 Luo D, Sun H, Yan L. Kelvin probe force microscopy in nanoscience and nanotechnology[M]∥Kumar C.Surface science tools for nanomaterials characterization.Berlin Heidelberg:Springer-Verlag,2015:117.
14 Melitz W, Shen J, Kummel A C, et al. Kelvin probe force microscopy and its application[J].Surface Science Reports,2011,66:1.
15 Glatzel T, Sadewasser S, Lux-Steiner M C. Amplitude or frequency modulation-detection in Kelvin probe force microscopy[J].Applied Surface Science,2003,210:84.
16 Moores B, Hane F, Eng L, et al. Kelvin probe force microscopy in application to biomolecular films:Frequency modulation, amplitude modulation, and lift mode[J].Ultramicroscopy,2010,110:708.
17 Sadeghi A, Baratoff A, Ghasemi A, et al. Multiscale approach for simulations of kelvin probe force microscopy with atomic resolution[J].Physical Review B,2012,86:075407.
18 Rohwerder M,Turcu F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)[J].Electrochimica Acta,2007,53:290.
19 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅰ.Verifaction of the experimental technique[J].Corrosion Science,1990,30:681.
20Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅱ.Experimental results[J].Corrosion Science,1990,30:697.
21Stratmann M, Streckel H, Kim K T, et al. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅲ.The measurement of polarisation curve on metal surface which are covered by thin electrotype layers[J].Corrosion Science,1990,30:715.
22Cook A B, Barrett Z, Lyon S B, et al. Calibration of the scanning Kelvin probe force microscope under controlled environmental conditions[J].Electrochimica Acta,2012,66:100.
23 Guo L Q, Zhao X M, Bai Y, et al. Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM[J].Applied Surface Science,2012,258:9087.
24 Guo L Q, Zhao X M, Wang B C, et al. The initial stage of atmospheric corrosion on interstitial free steel investigated by in situ SPM[J].Applied Surface Science,2013,70:188.
25 Örnek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel[J].Corrosion Science,2015,99:164.
26 Jönsson M, Thierry D, Lebozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J].Corrosion Science,2006,48:1193.
27 Wang J,Wang S Q. Correlation between galvanic corrosion and electronic work function of Al alloy surfaces[J].Acta Physico-Chimica Sinica,2014,30(3):551(in Chinese).
王健,王绍青.铝合金表面电偶腐蚀与电子功函数的关系[J].物理化学学报,2014,30(3):551.
28 Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques[J].Corrosion Science,2011,53:3733.
29 Guo L Q, Bai Y, Xu B Z, et al. Effect of hydrogen on pitting susceptibility of 2507 duplex stainless steel[J].Corrosion Science,2013,70:140.
30Sathirachinda N, Pettersson R, Pan J. Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS[J].Corrosion Science,2009,51:1850.
31Sathirachinda N, Pettersson R, Wessman S, et al. Scanning Kelvin probe force microscopy study of chromium nitrides in 2507 super duplex stainless steel—Implications and limitations[J].Electrochimica Acta,2011,56:1792.
32Zheng S, Li C, Qi Y, et al. Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J].Corrosion Science,2013,67:20.
33 Mallinson C F, Harvey A, Watts J F. The nobility of second phase particles in S-65 beryllium studied by scanning Kelvin probe force microscopy[J].Corrosion Science,2016,112:669.
34 Senöz C, Rohwerder M. Scanning Kelvin probe force microscopy for the in situ observation of the direct interaction between active head and intermetallic particles in filiform corrosion on aluminium alloy[J].Electrochimica Acta,2011,56:9588.
35 Senöz C, Borodin S, Stratmann M, et al. In situ detection of diffe-rences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy[J].Corrosion Science,2012,58:307.
36 Senöz C, Evers S, Stratmann M, et al. Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution[J].Electrochemistry Communications,2011,13:1542.
37 Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM[J].Corrosion Science,2012,60:76.
38 Wang G, Yan Y, Yang X, et al. Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy[J].Electrochemistry Communications,2013,35:100.
39 Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the d phase in hydrogen embrittlement of alloy 718[J].Acta Materialia,2016,109:69.
40Koyama M, Bashir A, Rohwerder M, et al. Spatially and Kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy[J].Journal of The Electrochemical Society,2015,162:C638.
41Polak L, Wijngaarden R J. Preventing probe induced topography correlated artifacts in Kelvin probe force microscopy[J].Ultramicroscopy,2016,171:158.
42Sadewasser S, Leendertz C, Streicher F, et al. The influence of surface topography on Kelvin probe force microscopy[J].Nanotechnology,2009,20:505503.
43 Golek F, Mazur P, Ryszka Z, et al. AFM image artifacts[J].Applied Surface Science,2014,304:11.
44 Souza T G F, Ciminelli V S T, Mohallem N D S. An assessment of errors in sample preparation and data processing for nanoparticle size analyses by AFM[J].Materials Characterization,2015,109:198.
45 Liscio A, Palermo V, Muüllen K, et al. Tip-sample interactions in Kelvin probe force microscopy: Quantitative measurement of the local surface potential[J].Journal of Physical Chemistry C,2008,112:17368.
46 Sathirachinda N, Pettersson R, Wessman S, et al. Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS[J].Corrosion Science,2010,52:179.
47 Wicinski M, Burgstaller W, Hassel A W. Lateral resolution in scanning Kelvin probe microscopy[J].Corrosion Science,2016,104:1.
48 Lzquierdo J, Fernández-Pérez B M, Martín-Ruíz L, et al. Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique[J].Electrochimica Acta,2015,178:1.
49 Xue M S, Xie J, Li W, et al. Characterization of interfacial strength of dissimilar metallic joints using a scanning Kelvin probe[J].Scripta Materialia,2012,66:265.
50Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J].Corrosion Science,2015,100:627.
51Bettini E, Kivisäkk U, Leygraf C, et al. Study of corrosion behavior of a 22% Cr duplex stainless steel:Influence of nano-sized chromium nitrides and exposure temperature[J].Electrochimica Acta,2013,113:280.
52Buzolin R H, Mohedano M, Mendis C L, et al. As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions[J].Materials Science and Engineering A,2017,682:238.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[6] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[7] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[8] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[9] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[10] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[11] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[12] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[13] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[14] 吴伟同, 徐迪, 程学群, 张达威, 李晓刚. 国家材料腐蚀与防护科学数据中心建设历程与发展现状[J]. 材料导报, 2024, 38(23): 23090008-8.
[15] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed