Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1079-1083    https://doi.org/10.11896/j.issn.1005-023X.2018.07.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应
王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮
南昌大学机电工程学院,南昌 330031
Inhibiting the Shuttle Effect of Lithium-Sulfur Batteries by Introducing a Dithiothreitol Interlayer
WANG Jie, SUN Xiaogang, CHEN Long, QIU Zhiwen, CAI Manyuan, LI Xu, CHEN Wei
College of Mechantronics Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 1957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了抑制锂硫电池的穿梭效应,改善锂硫电池的电化学性能,尝试以二硫苏糖醇(DTT)为剪切剂,对高阶多硫化物进行剪切以阻止其溶解。将二硫苏糖醇(DTT)掺入多壁碳纳米管(MWCNTs)纸中,制得DTT夹层,将该DTT夹层置于锂硫扣式半电池正极片和隔膜之间,正极片的载硫面密度约为2 mg/cm2。SEM观察结果证实DTT均匀分散在MWCNTs纸的表面和空隙中。电化学测试结果表明引入DTT夹层结构的锂硫电池在0.05C倍率首次放电比容量达到1 288 mAh/g,首次库伦效率接近100%,在0.5C、2C、4C倍率下充放电时的比容量分别达到650 mAh/g、600 mAh/g、410 mAh/g。DTT夹层结构的引入可有效剪切高阶多硫化物并阻止其迁移到锂负极,从而抑制穿梭效应,改善锂硫电池的循环稳定性和库伦效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杰
孙晓刚
陈珑
邱治文
蔡满园
李旭
陈玮
关键词:  锂硫电池  碳纳米管  夹层  二硫苏糖醇  剪切剂  穿梭效应    
Abstract: The present work aimed to restrain shuttle effect of lithium-sulfur (Li-S) batteries and improve the cycle perfor-mance, and made an attempt to utilize dithiothreitol (DTT) as scission reagent to prevent dissolution of lithium polysulfur (LiPS). The prefabricated MWCNTs paper was immersed in the DTT solution and dried to obtain a DTT interlayer, which was subsequently located between the cathode disk (with a sulfur areal loading of 2 mg/cm2) and the separator of a Li-S coin half-cell. The morphological and structural observation over the DTT interlayer by scanning electron microscopy (SEM) validated the uniform dispersion of DTT in the MWCNTs paper. The electrochemical test showed that the Li-S half-cell with the DTT interlayer possesses an initial discharge capacity of 1 288 mAh/g and a Coulombic efficiency approaching 100%, and moreover, maintains specific capacities of 650 mAh/g, 600 mAh/g and 410 mAh/g under the current rates of 0.5C, 2C and 4C respectively. Our experiment indicated DTT can effectively slice high-order LiPS and hinder its migration to the anode, and in consequence, significantly improve the cycle stability and Coulombic efficiency of Li-S battery.
Key words:  lithium-sulfur battery    carbon nanotube    interlayer    dithiothreitol    scission reagent    shuttle effect
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TM912.9  
基金资助: 江西省教育厅科研项目(20142BBE50071)
通讯作者:  孙晓刚:通信作者,男,1957年生,教授,硕士研究生导师,研究方向为碳纳米管和锂离子电池 E-mail:xiaogangsun@163.com   
作者简介:  王杰:男,1992年生,硕士研究生,研究方向为锂硫电池 E-mail:464425175@qq.com
引用本文:    
王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
WANG Jie, SUN Xiaogang, CHEN Long, QIU Zhiwen, CAI Manyuan, LI Xu, CHEN Wei. Inhibiting the Shuttle Effect of Lithium-Sulfur Batteries by Introducing a Dithiothreitol Interlayer. Materials Reports, 2018, 32(7): 1079-1083.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.005  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1079
1 Marmorstein D, Yu T H, Striebel K A. Electrochemical perfor-mance of lithium/sulfur cells with three different polymer electrolytes[J].Journal of Power Sources,2000,89(2):219.
2 Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J].Journal of Power Sources,2013,231(2):153.
3 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J].Nature Materials,2011,11(1):19.
4 Hu Zongqian, Xie Kai. Research progress of sulfur electrode of li-thium/sulfur batteries[J].Materials Review A:Review Papers,2011,25(9):46(in Chinese).
胡宗倩,谢凯.锂硫电池硫正极材料研究现状与展望[J].材料导报:综述篇,2011,25(9):46.
5 Diao Y, Xie K, Xiong S, et al. Shuttle phenomenon—The irrever-sible oxidation mechanism of sulfur active material in Li-S battery[J].Journal of Power Sources,2013,235(4):181.
6 Li Wanfei, et al. Progress of lithium/sulfur batteries based on che-mically modified carbon[J].Acta Physico-Chimica Sinica,2017,33(1):165(in Chinese).
李宛飞,等.化学改性碳在锂硫电池中的研究进展[J].物理化学学报,2017,33(1):165.
7 Yang Y, Zheng G, Cui Y. ChemInform abstract: Nanostructured sulfur cathodes[J].Cheminform,2013,44(24):3018.
8 Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J].Proceedings of the Natio-nal Academy of Sciences of the United States of America,2017,114(5):840.
9 Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J].Advanced Materials,2017,29(20):1601759.
10Dong Q, Wang C, Zheng M. Research progress and prospects of lithium sulfur batteries[J].Progress in Chemistry,2011,23(2):533(in Chinese).
董全峰,王翀,郑明森.锂硫电池关键材料研究进展与展望[J].化学进展,2011,23(2):533.
11Cheng J, Pan Y, Pan J A, et al. Sulfur/bamboo charcoal composites cathode for lithium-sulfur batteries[J].RSC Advances,2014,5(1):68.
12Lu S, Chen Y, Wu X, et al. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading[J].Scientific Reports,2014,4(4):4629.
13 Wang J, Yang J, Xie J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J].Advanced Materials,2002,14(13-14):963.
14 Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium-sulfur battery[J].Journal of Solid State Electrochemistry,2014,18(4):1025.
15 Lamoureux G V, Whitesides G M. Synthesis of dithiols as reducing agents for disulfides in neutral aqueous solution and comparison of reduction potentials[J].The Journal of Organic Chemistry,1993,58(3):633.
16 Nordstrand K, Slund F, Holmgren A, et al. NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: Implications for the enzymatic mechanism[J].Journal of Molecular Biology,1999,286(2):541.
17 Xiao Z, Yang Z, Nie H, et al. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries[J].Journal of Materials Chemistry A,2014,2(23):8683.
18 Yu M, Ma J, Song H, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries[J].Energy & Environmental Science,2016,9(4):1495.
19 Zu C, Manthiram A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J].Advanced Energy Materials,2013,3(8):1008.
20Yuan Z, Peng H, Huang J, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J].Advanced Functional Materials,2015,24(39):6105.
21Wang Xueli, Wei Junhua, Wang Qingjie, et al. Effect of sulfur content and type of collector on performance of Li/S battery[J].Battery Bimonthly,2013,43(3):151(in Chinese).
王雪丽,魏俊华,王庆杰,等.硫含量和集流体类型对锂硫电池性能的影响[J].电池,2013,43(3):151.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[4] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[5] 葛世伟, 赵倩, 刘玉, 刘耀阳, 韦楚. 层状双羟基氢氧化物及其衍生物在锂硫电池中的应用[J]. 材料导报, 2024, 38(20): 23070107-10.
[6] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[7] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[8] 罗智涛, 庄淇凯, 李小琪, 李凯, 程小全. 碳泡沫复合材料夹层结构准静态横压性能[J]. 材料导报, 2024, 38(16): 23020256-9.
[9] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[10] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[11] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[12] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[13] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[14] 陈韩青, 徐志远, 屈仲毅, 曾辉, 朱长春. 蜂窝夹层结构无损检测方法研究综述[J]. 材料导报, 2024, 38(10): 22090208-15.
[15] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed