Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 719-724    https://doi.org/10.11896/j.issn.1005-023X.2018.05.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能
张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根
中南大学化学化工学院,长沙 410083
Iron Electrode Derived from Fe/Co-MOF and Its Electrochemical Performance for Nickel-Iron Batteries
ZHANG Hehe, LI Fangfang, WANG Haiyan, PENG Zhiguang, TANG Yougen
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电极是构筑高性能镍铁电池的关键。本文报道了一种基于Fe/Co-MOF制备镍铁电池铁电极的新思路,并系统研究了该材料的电化学性能。XRD、SEM和HRTEM等结果表明,Fe/Co-MOF烧结产物以八面体颗粒为主,主要由Fe3O4相及少量Fe-Co合金构成。作为镍铁电池的阳极时,相比于未加入Co的材料,目标材料的电化学性能得到了明显改善。Fe/Co-MOF烧结产物的放电平台稳定在1.18 V,比Fe-MOF烧结产物的放电平台(1.10 V)高约0.08 V。尽管Fe/Co-MOF烧结产物在前10次循环出现了明显的容量衰减,但之后保持了较好的循环稳定性能,在1.0 A·g-1电流密度下循环90次后比容量稳定在233.1 mAh·g-1,而Fe-MOF烧结后产物的比容量仅为181.2 mAh·g-1。交流阻抗结果显示Fe/Co-MOF烧结产物表现出更低的电荷传递阻抗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张贺贺
李芳芳
王海燕
彭志光
唐有根
关键词:  Fe3O4  碳复合  金属有机骨架  镍铁电池  阳极    
Abstract: Developing high performance iron electrodes is still a challenge for nickel-iron batteries. In this work, we reported a high-performance iron electrode material derived from Fe/Co-MOF for the first time. As shown by XRD, SEM and TEM analysis, octahedral particles consisted of Fe3O4 phase and trace Fe-Co alloy were obtained by calcining the Fe/Co-MOF precursor. The improved performance of this hybrid as anode materials for nickel-iron batteries in comparison with the Fe-MOF alone was due to the incorporation of an appropriate amount of Co. It showed a discharge plateau at about 1.18 V, which was slightly higher than Fe-MOF (1.10 V). Despite the sharp capacity loss in initial 10 cycles, a stable capacity of 233.1 mAh·g-1 was obtained at a current density of 1.0 A·g-1 after 90 cycles, which was about 181.2 mAh·g-1 higher than that of Fe-MOF derived sample. The improved electrochemical properties may be attributed to the improved electronic conductivity and reduced ion transfer resistance.
Key words:  Fe3O4    carbon composite    metal organic framework    nickel-iron battery    anode material
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(21571189;21301193)
通讯作者:  彭志光:通信作者,男,博士,副教授,硕士研究生导师,研究方向为纳米材料、多相催化和功能材料 E-mail:zhgpeng@csu.edu.cn   
作者简介:  张贺贺:男,1994年生,硕士研究生,研究方向为功能材料和器件 E-mail:liffcsu@163.com 唐有根:
引用本文:    
张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
ZHANG Hehe, LI Fangfang, WANG Haiyan, PENG Zhiguang, TANG Yougen. Iron Electrode Derived from Fe/Co-MOF and Its Electrochemical Performance for Nickel-Iron Batteries. Materials Reports, 2018, 32(5): 719-724.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.005  或          https://www.mater-rep.com/CN/Y2018/V32/I5/719
1 Li F, Shangguan E, Li J, et al. Influence of annealing temperature on the structure and electrochemical performance of the Fe3O4 anode material for alkaline secondary batteries[J].Electrochimica Acta,2015,178:34.
2 Posada J O G, Hall P J. Towards the development of safe and commercially viable nickel-iron batteries: Improvements to coulombic efficiency at high iron sulphide electrode formulations[J].Journal of Applied Electrochemistry,2016,46(4):451.
3 Wang H, Liang Y, Gong M, et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials[J].Nature Communication,2012,3:917.
4 Guan C, Zhao W, Hu Y, et al. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes[J].Advanced Energy Materials,2016,6(20):1601034.
5 Liu J, Chen M, Zhang L, et al. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film[J].Nano Letters,2014,14(12):7180.
6 Jiang W, Liang F, Wang J, et al. Enhanced electrochemical performances of FeOx-graphene nanocomposites as anode materials for alkaline nickel-iron batteries[J].RSC Advances,2014,4(30):15394.
7 Shangguan E, Guo L, Li F, et al. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries[J].Journal of Power Sources,2016,327:187.
8 Shangguan E, Li F, Li J, et al. FeS/C composite as high-perfor-mance anode material for alkaline nickel-iron rechargeable batteries[J].Journal of Power Sources,2015,291:29.
9 Kim E, Yoon M. Facile synthesis of γ-Fe2O3@porous carbon materials using an Fe-based metal-organic framework: Structure and porosity study[J].Journal of Porous Materials,2015,22(6):1495.
10 Han Y, Zhai J, Zhang L, et al. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction[J].Nanoscale,2016,8(2):1033.
11 Ji Sen L, Shun Li L, Yu Jia T, et al. Nitrogen-doped Fe/Fe3C@ graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER[J].Chemical Communications (Cambridge),2015,51(13):2710.
12 Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microbo-xes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J].Journal of the American Chemical Society,2012,134(42):17388.
13 Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake[J].Journal of the American Chemical Society,2011,133(31):11854.
14 Posada J O G, Hall P J. The effect of electrolyte additives on the performance of iron based anodes for Ni/Fe cells[J].Journal of the Electrochemical Society,2015,162(10):A2036.
15 Wu Z S, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society,2012,134(22):9082.
16 Bhuvaneswari S, Pratheeksha P M, Anandan S, et al. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(11):5284.
17 Liu K, Huang X, Wang H, et al. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries[J].ACS Applied Materials & Interfaces,2016,8(50):34422.
18 Liu K, Zhou Z, Wang H, et al. N-doped carbon supported Co3O4 nanoparticles as an advanced electrocatalyst for oxygen reduction reaction in Al-air battery[J].RSC Advances,2016,6:55552.
19 Zhang H, Li H, Wang H, et al. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction[J].Journal of Power Sources,2015,280:640.
20 Mu J, Chen B, Guo Z, et al. Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials[J].Nanoscale,2011,3(12):5034.
21 Zhang H, Qiao H, Wang H, et al. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery[J].Nanoscale,2014,6(17):10235.
22 Rajan A S, Sampath S, Shukla A K. An in situ carbon-grafted alkaline iron electrode for iron-based accumulators[J].Energy & Environmental Science,2014,7(3):1110.
23 Kao C Y, Chou K S. Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery[J].Journal of Power Sources,2010,195(8):2399.
24 Manohar A K, Malkhandi S, Yang B, et al. A high-performance rechargeable iron electrode for large-scale battery-based energy storage[J].Journal of the Electrochemical Society,2012,159(8):A1209.
25 Manohar A K, Yang C, Malkhandi S, et al. Understanding the factors affecting the formation of carbonyl iron electrodes in rechargea-ble alkaline iron batteries[J].Journal of the Electrochemical Society,2012,159(12):A2148.
26 Sun D,Tang Y,Ye D,et al.Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high perfor-mance Li ion batteries[J].ACS Applied Materials & Interfaces,2017,9(6):5254.
27 Sun D, Jin G, Wang H, et al. LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batte-ries[J].Journal of Materials Chemistry A,2014,2(21):8009.
28 Sun D, Xue X, Tang Y, et al. High-rate LiTi2(PO4)3@N-C composite via bi-nitrogen sources doping[J].ACS Applied Materials & Interfaces,2015,7(51):28337.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[3] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[4] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[5] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[6] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[7] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[8] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[9] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[10] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[11] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[12] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[13] 侯继禹, 王保杰, 许凯, 许道奎, 孙杰. 镁合金负差数效应的研究进展[J]. 材料导报, 2023, 37(12): 21070256-7.
[14] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[15] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed