Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 574-578    https://doi.org/10.11896/j.issn.1005-023X.2018.04.013
  材料研究 |
铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变
唐昌平1, 2, 李国栋3, 李志云4, 孙玹琪4
1 湖南科技大学材料科学与工程学院,湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201;
3 苏州热工研究院有限公司设备管理部,深圳 518124;
4 株洲六零八所科技有限公司,株洲 412002
Microstructure and Mechanical Property Evolution of Mg-Gd-Y-Nd-Zr Casting Alloy During Aging Treatment
TANG Changping1, 2, LI Guodong3, LI Zhiyun4, SUN Xuanqi4
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Equipment Management Department, Suzhou Nuclear Power Research Institute Company Limited, Shenzhen, 518124;
4 Science and Technology Company Limited of No. 608 Research Institute, Zhuzhou, 412002
下载:  全 文 ( PDF ) ( 5134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金相观察、硬度测试、单轴拉伸、扫描电镜观察、能谱分析、透射电镜观察等手段,研究了铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变。结果表明,经固溶处理后,合金具有较强的塑性变形能力,延伸率可达10%以上,但强度较低。随时效程度增加,合金强度升高塑性降低,经225 ℃/3 h时效处理后,合金为欠时效状态,与基体共格的β″相是主要的强化相,断口以解理面、韧窝、撕裂棱和晶界为主要特征。经峰值时效处理后,与基体呈半共格关系的β'相是主要的强化相,合金抗拉强度超过300 MPa,但塑性急剧降低,断口以解理面、撕裂棱和晶界为主要特征,与欠时效样品相比,解理面所占比例明显增加,且解理面及晶界光滑。进入过时效状态后,合金的强度降低,但延伸率有所提升,断口以晶界和解理面为主要特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
李国栋
李志云
孙玹琪
关键词:  Mg-Gd-Y合金  时效处理  微观组织  力学性能  断口分析    
Abstract: Microstructure and mechanical property evolution of Mg-Gd-Y-Nd-Zr casting alloy during aging treatment were investigated by means of optical microscopy (OM), hardness testing, uniaxial tensile testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the alloy exhibited good ductility and low strength after solution treatment, and the elongation exceeded 10%. As the aging time prolonged, the strength increased while the ductility decreased. The sample was in under-aged state when treated at 225 ℃ for 3 h, and β″was the main strengthening phase, which was coherent with the matrix. The fracture surface of the sample featured cleavage planes, dimples, tea-ring ridges and grain boundaries. In the peak-aged state, the strengthening phase was β', which is semi-coherent with the matrix. The ultimate tensile strength of the peak-aged sample exceeded 300 MPa, while the ductility decreased sharply. The fracture surface of the sample featured cleavage planes, tearing ridges and grain boundaries. The proportion of cleavage planes was obviously higher than that in under-aged sample, and the cleavage plane and the grain boundary were smooth. The strength increased but the ductility decreased when the sample was over-aged. Grain boundaries and cleavage planes were the main characterization of the fracture surface.
Key words:  Mg-Gd-Y alloy    aging treatment    microstructure    mechanical property    fracture analysis
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51605159); 湖南省自然科学基金(2016JJ5042)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
TANG Changping, LI Guodong, LI Zhiyun, SUN Xuanqi. Microstructure and Mechanical Property Evolution of Mg-Gd-Y-Nd-Zr Casting Alloy During Aging Treatment. Materials Reports, 2018, 32(4): 574-578.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.013  或          https://www.mater-rep.com/CN/Y2018/V32/I4/574
1 Zhang X M, Peng Z K, Chen J M, et al. Heat-resistant magnesium alloys and their development[J].The Chinese Journal of Nonferrous Me-tals,2004,14(9):1443(in Chinese).
张新明,彭卓凯,陈健美,等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443.
2 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281(in Chinese).
吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281.
3 Chen Q W, Tang A T, Xu T Y, et al. High performance cast magne-sium rare-earth alloys: retrospect and prospect[J].Materials Review A:Review Papers,2016,30(9):1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1.
4 Zhang D F, Zhang H J, Lan W, et al. Some research progress of high-strength magnesium alloys[J].Transactions of Materials and Heat Treatment,2016,33(6):1(in Chinese).
张丁非,张红菊,兰伟,等.高强镁合金的研究进展[J].材料热处理学报,2016,33(6):1.
5 Rokhlin L L. Magnesium alloys containing rare earth metals: structure and properties[M].London:Taylor & Francis,2003.
6 Friedrich H E, Mordike B L. Magnesium technology: metallurgy, design data, applications[M].Berlin:Springer,2006.
7 Czerwinski F, Trojanova Z, Szaraz Z, et al. Magnesium alloys—Design, processing and properties[M].Rijeka,Croatia:InTech,2011.
8 Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J].Acta Materialia,2007,55(12):4137.
9 Xu C, Zheng M Y, Chi Y Q, et al. Microstructure and mechanical properties of the Mg-Gd-Y-Zn-Zr alloy fabricated by semi-continuous casting[J].Materials Science and Engineering:A,2012,549:128.
10 Zhang S, Liu W C, Gu X Y, et al. Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy[J].Journal of Alloys and Compounds,2013,557(1):91.
11 Wu Y J, Xu C, Zheng F Y, et al. Formation and characterization of microstructure of as-cast Mg-6Gd-4Y-xZn-0.5Zr (x=0.3, 0.5 and 0.7 wt.%) alloys[J].Materials Characterization,2013,79:93.
12 Jafari Nodooshan H R, Liu W C, Wu G H, et al. Microstructure cha-racterization and high-temperature shear strength of the Mg-10Gd-3Y-1.2Zn-0.5Zr alloy in the as-cast and aged conditions[J].Journal of Alloys and Compounds,2015,619:826.
13 Chen J, Wang Q D, Zhao Z, et al. Microstructure and mechanical pro-perties of Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr alloy with high strength and ductility[J].High Technology Letters,2010,20(4):427(in Chinese).
陈杰,王渠东,赵政,等.高强高韧Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr合金的组织与性能[J].高技术通讯,2010,20(4):427.
14 Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy[J].Materials Science and Engineering: A,2010,528(1):323.
15 Tang C P, Liu W H, Chen Y Q, et al. Effects of thermal treatment on microstructure and mechanical properties of a Mg-Gd-based alloy plate[J].Materials Science and Engineering:A,2016,659:63.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed