Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 391-397    https://doi.org/10.11896/j.issn.1005-023X.2018.03.008
     材料综述 |
金属纳米颗粒导电墨水制备与后处理工艺的研究进展
刘云子,张伟,宋占永
陆军装甲兵学院,北京 100072
Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks
Yunzi LIU,Wei ZHANG,Zhanyong SONG
Army Academy of Armord Force, Beijing 100072
下载:  全 文 ( PDF ) ( 1939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

印刷电子技术是一种低成本、简捷高效、绿色环保的电子器件制造技术,已在柔性电子制造等诸多领域展现出巨大的潜力。近年来,导电墨水作为印刷电子技术迅速发展的关键材料受到了学术界的广泛关注和报道。结合印刷电子技术的应用和发展现状,对金属纳米颗粒导电墨水的各项性能指标及其机理进行概述,综述了金属纳米颗粒导电墨水的制备和后处理工艺的研究进展,着重介绍了部分有潜力的前沿技术,并分析了这些技术对应的优势与局限及其发展方向。最后结合印刷电子技术目前发展中存在的问题提出了一些观点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘云子
张伟
宋占永
关键词:  印刷电子  导电墨水  金属材料  纳米材料    
Abstract: 

Printed electronics technology is a low-cost laconic and environment-friendly manufacturing technology of electro-nics, which exhibits tremendous potential in many fields, such as flexible electron devices manufacturing. Recently, conductive inks as the key material of the fast development in printed electronics have been paid much attention and reported a lot in academic community. Combining the applied and development status of printed electronics, this article summarizes the performance indexes and their mechanism of nanoparticles-based conductive inks, reviews the research advance of preparation and posterior treatment techno-logies of nanoparticles-based conductive inks, puts emphasis on part of the potential advanced technologies, and analyzes their preponderance, boundedness and development direction. In the end, several views according to the current problems in development of printed electronics are put forward.

Key words:  printed electronics    conductive inks    metal materials    nanometer materials
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB383.3  
  X796  
基金资助: 国家重点研发计划(2017YFB0310703)
作者简介:  刘云子:男,1994年生,硕士研究生,研究方向为印刷电子导电墨水的制备|张伟:通信作者,男,1971年生,教授,博士研究生导师,研究方向为自制造工程 Tel:010-66711650 E-mail:zhangwei18@yeah.net
引用本文:    
刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks. Materials Reports, 2018, 32(3): 391-397.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.008  或          https://www.mater-rep.com/CN/Y2018/V32/I3/391
  
  
  
  
1 Khan S, Lorenzelli L, Dahiya R S . Technologies for printing sensors and electronics over large flexible substrates: A review[J]. IEEE Sensors Journal, 2015,15(6):3164.
2 Seekaew Y, Lokavee S, Phokharatkul D , et al. Low-cost and flexible printed graphene-PEDOT∶PSS gas sensor for ammonia detection[J]. Organic Electronics, 2014,15(11):2971.
3 Pierre A, Sadeghi M, Payne M M , et al. All-printed flexible organic transistors enabled by surface tension-guided blade coating[J]. Advanced Materials, 2014,26(32):5722.
4 Zou S, Hamilton M C. Ink-jet printed Cu/CuxO/Ag ReRAM memory devices fabricated on flexible substrate [C]∥Proceedings of IEEE 64th Electronic Components and Technology Conference.Lake Buena Vista,US, 2014.
5 Cui Z . Status and prospects of the printed electronics industry in China[J].Printed Electronics,2013(12):4(in Chinese).
5 崔铮 . 中国印刷电子产业现状与前景展望[J].印制电子技术,2013(12):4.
6 崔铮 . 印刷电子学[M]. 北京: 高等教育出版社, 2010.
7 Rao R V K, Abhinav K V, Karthik P S , et al. Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5:77760.
8 Eun K, Chon M W, Yoo T H , et al. Electromechanical properties of printed copper ink film using a white flash light annealing process for flexible electronics[J]. Microelectronics Reliability, 2015,55(5):838.
9 ?hlund T, Schuppert A K, Hummelg?rd M , et al. Inkjet fabrication of copper patterns for flexible electronics: Using paper with active precoatings[J]. ACS Applied Materials & Interfaces, 2015,7(33):18273.
10 Nathan A, Ahnood A, Cole M T , et al. Flexible electronics: The next ubiquitous platform[J]. Proceedings of the IEEE, 2012,100(5):1486.
11 Wang M A . Study on the preparation and application of metal nano-particles-based conductive inks[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
11 王明昂 . 纳米金属颗粒的制备及应用研究[D]. 杭州:浙江大学, 2016.
12 Zhang K L, Du Y G . Review of conductive silver inks for inkjet printing[J]. Precious Metals, 2014,35(4):80(in Chinese).
12 张楷力, 堵永国 . 喷墨打印中的银导电墨水综述[J]. 贵金属, 2014,35(4):80.
13 Cui S Y, Liu J, Wu W . Preparation of metal nanoparticle-based conductive inks and their applications in printed electronics[J]. Progress in Chemistry, 2015,27(10):1509(in Chinese).
13 崔淑媛, 刘军, 吴伟 . 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015,27(10):1509.
14 Harra J, M?kitalo J, Siikanen R , et al. Size-controlled aerosol synjournal of silver nanoparticles for plasmonic materials[J]. Journal of Nanoparticle Research, 2012,14(6):1.
15 Kassavetis S, Kaziannis S, Pliatsikas N , et al. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation[J]. Applied Surface Science, 2015,336:262.
16 Guozhong Cao, Ying Wang. 纳米结构和纳米材料:合成、性能及应用[M]. 董星龙, 译.北京:高等教育出版社, 2012.
17 Guzmán M G, Dille J, Godet S . Synjournal of silver nanoparticles by chemical reduction method and their antibacterial activity[J]. Proceedings of World Academy of Science Engineering & Technolog, 2009,33(3):367.
18 Chien Dang M , Dung Dang T M, Fribourgblanc E. Silver nanoparticles ink synjournal for conductive patterns fabrication using inkjet printing technology[J]. Advances in Natural Sciences Nanoscience & Nanotechnology, 2014,6(1):1.
19 Shen W, Zhang X, Huang Q , et al. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity[J]. Nanoscale, 2014,6(3):1622.
20 Bar H, Bhui D K, Sahoo G P , et al. Green synjournal of silver nanoparticles using latex of Jatropha curcas[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009,339(1):134.
21 Elumalai E K, Kayalvizhi K, Silvan S . Coconut water assisted green synjournal of silver nanoparticles[J]. Journal of Pharmacy & Bioallied Sciences, 2014,6(4):241.
22 Pai G, Dayal N, Shettigar C D , et al. Microwave assisted biosynjournal of silver nanoparticles by aqueous extract of ocimum sanctum (Tulsi)[J]. MGM Journal of Medical Sciences, 2014,1(3):117.
23 Rao R V K, Abhinav K V, Karthik P S , et al. Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5:77760.
24 徐滨士 . 纳米表面工程[M]. 北京: 化学工业出版社, 2003.
25 Ervin M H, Le L T, Lee W Y . Inkjet-printed flexible graphene based supercapacitors[J]. Electrochimica Acta, 2013,147:610.
26 Christenson K K, Paulsen J A, Renn M J, et al. Direct printing of circuit boards using aerosol jet [C]∥Proceedings of 27th Internatio-nal Conference on Digital Printing Technologies.Minneapolis,US, 2011.
27 Blumenthal T, Fratello V, Nino G, et al. Conformal printing of sensors on 3D and flexible surfaces using aerosol jet deposition [C]∥Proceedings of Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems.San Diego,US, 2013.
28 Li J, Cheng T . Comprehensive review of flexible printed electronic inkjet technology[J].Print Technology,2014(13):38(in Chinese).
28 李劲, 程涛 . 柔性印刷电子喷墨技术全面解析[J].印刷技术,2014(13):38.
29 Park J, Moon J . Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing[J]. Langmuir, 2006,22(8):3506.
30 Kim D, Jeong S, Park B K , et al. Direct writing of silver conductive patterns:Improvement of film morphology and conductance bycontrolling solvent compositions[J]. Applied Physics Letters, 2006,89(26):264101.
31 Zhang Z, Zhang X, Xin Z , et al. Synjournal of monodisperse silver nanoparticles for ink-jet printed flexible electronics[J]. Nanotech-nology, 2011,22(42):425601.
32 Park B K, Kim D, Jeong S , et al. Direct writing of copper conductive patterns by ink-jet printing[J]. Thin Solid Films, 2007,515(19):7706.
33 Chiang T H, Wu K D, Hsieh T E . Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process[J]. IEEE Transactions on Nanotechnology, 2014,13(1):116.
34 Zhu J J, Kan C X, Wan J G , et al. High-yield synjournal of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process[J]. Journal of Nanomaterials, 2011,2011:40.
35 Karthik P S, Singh S P . Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5(95):77760.
36 He J, Li S, Wang H , et al. Effect of caboxymethyl cellulose sodium on the properties of nano-silver conductive ink[J]. Chemical Industry and Engineering, 2012,29(4):1(in Chinese).
36 何军, 李莎, 王虹 , 等. 羧甲基纤维素钠对纳米银导电墨水性能的影响[J]. 化学工业与工程, 2012,29(4):1.
37 Zhang X M, Zhang Z Z, Zhao F X , et al. Anti-oxidation copper nanopowders synthesized by N2H4·H2O reduction method[J]. Journal of Nanjing Tech University, 2014,36(6):118(in Chinese).
37 张晓敏, 张振忠, 赵芳霞 , 等. 抗氧化纳米Cu粉的水合肼还原法制备[J]. 南京工业大学学报, 2014,36(6):118.
38 Jeong S, Woo K, Kim D , et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing[J]. Advanced Functional Materials, 2008,18(5):679.
39 Lee C, Kim N R, Koo J , et al. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics[J]. Nanotechno-logy, 2015,26(45):455601.
40 Kim C K, Lee G J, Lee M K , et al. A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014,263:1.
41 Li L H, Mo L X, Ran J , et al. Conducive ink and its application technology progress[J]. Imaging Science and Photochemistry, 2014,32(4):393(in Chinese).
41 李路海, 莫黎昕, 冉军 , 等. 导电墨水及其应用技术进展[J]. 影响科学与光化学, 2014,32(4):393.
42 Moisala A, Nasibulin A G, Kauppinen E I . The role of metal nano-particles in the catalytic production of single-walled carbon nanotubes—A review[J]. ChemInform, 2004,35(3):3011.
43 Perelaer J, Smith P J, Mager D , et al. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials[J]. Journal of Materials Chemistry, 2010,20(39):8446.
44 Woo K, Bae C, Jeong Y , et al. Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors[J]. Journal of Materials Chemistry, 2010,20(19):3877.
45 Huang Q, Shen W, Xu Q , et al. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity[J]. Materials Chemistry & Physics, 2014,147(3):550.
46 Wünscher S, Stumpf S, Teichler A , et al. Localized atmospheric plasma sintering of inkjet printed silver nanoparticles[J]. Journal of Materials Chemistry, 2012,22(47):24569.
47 Ko S H, Pan H, Grigoropoulos C P , et al. Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles[J]. Applied Physics Letters, 2007,90(14):141103.
48 Wang Z, Wang W, Jiang Z , et al. Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics[J]. Progress in Organic Coatings, 2016,101:604.
49 Rager M S, Aytug T, Veith G M , et al. Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: Potential for flexible printed electronics[J]. ACS Applied Materials & Interfaces, 2016,8(3):2441.
50 ?hlund T, Schuppert A K, Hummelg?rd M , et al. Inkjet fabrication of copper patterns for flexible electronics: Using paper with activeprecoatings[J]. ACS Applied Materials & Interfaces, 2015,7:18273.
51 Kang H, Sowade E, Baumann R R . Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds[J]. ACS Applied Materials & Interfaces, 2014,6(3):1682.
52 Chung W H, Hwang H J, Kim H S . Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics[J]. Thin Solid Films, 2015,580:61.
53 Woo K, Kim D, Kim J S , et al. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate[J]. Langmuir, 2008,25(1):429.
54 Chang W Y, Fang T H, Shen Y T , et al. Flexible electronics sensors for tactile multiscanning[J]. Review of Scientific Instruments, 2009,80(8):413.
55 Yuan Z , Tol R S J. Evaluating the costs of desalination and water transport[J]. Water Resources Research, 2005,41(3):69.
56 Turner C W, Gantz B J, Vidal C , et al. Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing[J]. Journal of the Acoustical Society of America, 2004,115(4):1729.
57 S?ndergaard R, H?sel M, Angmo D , et al. Roll-to-roll fabrication of polymer solar cells[J]. Materials Today, 2012,15(1-2):36.
58 Lewis J A, Ahn B Y . Device fabrication: Three-dimensional printed electronics[J]. Nature, 2015,518(7537):42.
59 Cooperstein I, Layani M, Magdassi S . 3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects[J]. Journal of Materials Chemistry C, 2015,3(9):2040.
[1] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[2] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[3] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[4] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[5] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[6] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[7] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[8] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[9] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[10] 付华, 陈慧媛, 宋维君, 赵云. 一种新型的用于萃取铷的冠醚功能化磁性固相纳米材料[J]. 材料导报, 2024, 38(17): 22070038-6.
[11] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[12] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[13] 潘二才, 姜志超, 黄嘉辉, 马玉荣. 通过仿生矿化修复人体牙齿结构[J]. 材料导报, 2024, 38(15): 23030040-13.
[14] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[15] 戴瑛凡, 杨瑞昊, 吕权杰, 李晗寅, 陶可. 无机纳米材料用于声动力治疗的研究进展[J]. 材料导报, 2024, 38(1): 22110085-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[4] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[5] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[6] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[7] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[8] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[9] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
[10] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed